可在宽温条件下工作的锌离子电池碳酸盐辅助混沌电解质

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-06-14 DOI:10.1021/acsenergylett.4c00833
Zehui Xie, Na Chen, Mingjun Zhang, Mingming Wang, Xinhua Zheng, Shuang Liu, Ruihao Luo, Li Song, Yahan Meng, Zaichun Liu, Zhenyu Li* and Wei Chen*, 
{"title":"可在宽温条件下工作的锌离子电池碳酸盐辅助混沌电解质","authors":"Zehui Xie,&nbsp;Na Chen,&nbsp;Mingjun Zhang,&nbsp;Mingming Wang,&nbsp;Xinhua Zheng,&nbsp;Shuang Liu,&nbsp;Ruihao Luo,&nbsp;Li Song,&nbsp;Yahan Meng,&nbsp;Zaichun Liu,&nbsp;Zhenyu Li* and Wei Chen*,&nbsp;","doi":"10.1021/acsenergylett.4c00833","DOIUrl":null,"url":null,"abstract":"<p >The chaotropic salt electrolyte (CSE) has become an effective strategy to activate low-temperature aqueous zinc-ion batteries. However, the Zn battery performance has been largely compromised due to the side reaction of active water molecules in CSE. Herein we design a Zn(BF<sub>4</sub>)<sub>2</sub> in a propylene carbonate–water cosolvent electrolyte that facilitates the zinc plating/stripping in a wide temperature range (−40 to 60 °C). Theoretical and experimental results demonstrate the dual effect of propylene carbonate on regulating the hydrogen bond network and reshaping the Zn<sup>2+</sup> solvation structure, bringing the antifreezing property and smooth Zn plating/stripping. Consequently, at −20 °C, the Cu//Zn asymmetric cell can achieve stable cycling for over 4000 h at 0.5 mAh cm<sup>–2</sup>. At −40 °C, the Zn//tetrachlorobenzoquinone full battery can deliver a reversible specific capacity of 77.9 mAh g<sup>–1</sup> after 700 cycles. This work presents an effective strategy for the development of high-performance ZIBs in a wide temperature range.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonate-Assisted Chaotropic Electrolyte for Zinc Ion Battery with Wide Temperature Operation\",\"authors\":\"Zehui Xie,&nbsp;Na Chen,&nbsp;Mingjun Zhang,&nbsp;Mingming Wang,&nbsp;Xinhua Zheng,&nbsp;Shuang Liu,&nbsp;Ruihao Luo,&nbsp;Li Song,&nbsp;Yahan Meng,&nbsp;Zaichun Liu,&nbsp;Zhenyu Li* and Wei Chen*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.4c00833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The chaotropic salt electrolyte (CSE) has become an effective strategy to activate low-temperature aqueous zinc-ion batteries. However, the Zn battery performance has been largely compromised due to the side reaction of active water molecules in CSE. Herein we design a Zn(BF<sub>4</sub>)<sub>2</sub> in a propylene carbonate–water cosolvent electrolyte that facilitates the zinc plating/stripping in a wide temperature range (−40 to 60 °C). Theoretical and experimental results demonstrate the dual effect of propylene carbonate on regulating the hydrogen bond network and reshaping the Zn<sup>2+</sup> solvation structure, bringing the antifreezing property and smooth Zn plating/stripping. Consequently, at −20 °C, the Cu//Zn asymmetric cell can achieve stable cycling for over 4000 h at 0.5 mAh cm<sup>–2</sup>. At −40 °C, the Zn//tetrachlorobenzoquinone full battery can deliver a reversible specific capacity of 77.9 mAh g<sup>–1</sup> after 700 cycles. This work presents an effective strategy for the development of high-performance ZIBs in a wide temperature range.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00833\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00833","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

混沌盐电解质(CSE)已成为激活低温水性锌离子电池的有效策略。然而,由于 CSE 中活性水分子的副反应,锌电池的性能在很大程度上受到了影响。在此,我们设计了一种碳酸丙烯酯-水共溶剂电解液中的 Zn(BF4)2,该电解液可在较宽的温度范围(-40 至 60 °C)内促进锌的电镀/剥离。理论和实验结果表明,碳酸丙烯酯具有调节氢键网络和重塑 Zn2+ 溶解结构的双重作用,从而带来了抗冻性能和镀锌/剥离的顺利进行。因此,在-20 °C时,铜/锌不对称电池可在 0.5 mAh cm-2 的条件下稳定循环 4000 小时以上。在-40 °C时,锌/四氯对苯醌全电池经过700次循环后,可提供77.9 mAh g-1的可逆比容量。这项工作为在宽温度范围内开发高性能 ZIB 提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbonate-Assisted Chaotropic Electrolyte for Zinc Ion Battery with Wide Temperature Operation

The chaotropic salt electrolyte (CSE) has become an effective strategy to activate low-temperature aqueous zinc-ion batteries. However, the Zn battery performance has been largely compromised due to the side reaction of active water molecules in CSE. Herein we design a Zn(BF4)2 in a propylene carbonate–water cosolvent electrolyte that facilitates the zinc plating/stripping in a wide temperature range (−40 to 60 °C). Theoretical and experimental results demonstrate the dual effect of propylene carbonate on regulating the hydrogen bond network and reshaping the Zn2+ solvation structure, bringing the antifreezing property and smooth Zn plating/stripping. Consequently, at −20 °C, the Cu//Zn asymmetric cell can achieve stable cycling for over 4000 h at 0.5 mAh cm–2. At −40 °C, the Zn//tetrachlorobenzoquinone full battery can deliver a reversible specific capacity of 77.9 mAh g–1 after 700 cycles. This work presents an effective strategy for the development of high-performance ZIBs in a wide temperature range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Digital Twin Battery Modeling and Simulations: A New Analysis and Design Tool for Rechargeable Batteries Generative Design and Experimental Validation of Non-Fullerene Acceptors for Photovoltaics Rational Third Component Choices Drive Enhanced Morphology and Efficiency in Ternary Blend Organic Solar Cells Origins of Nanoalloy Catalysts Degradation during Membrane Electrode Assembly Fabrication Correction to “Multicomponent Approach for Stable Methylammonium-Free Tin–Lead Perovskite Solar Cells”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1