阐明 Li3InCl6 包覆 LiNi0.8Co0.15Al0.05O2 对基于 Li6PS5Cl 的固态电池电化学力学的影响

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2024-06-13 DOI:10.1021/acs.chemmater.4c00515
Feng Jin, Laras Fadillah, Hung Quoc Nguyen, Torgeir Matre Sandvik, Yu Liu, Adrián García-Martín, Elena Salagre, Enrique G. Michel, Dragos Stoian, Kenneth Marshall, Wouter Van Beek, Günther Redhammer, Mir Mehraj Ud Din* and Daniel Rettenwander*, 
{"title":"阐明 Li3InCl6 包覆 LiNi0.8Co0.15Al0.05O2 对基于 Li6PS5Cl 的固态电池电化学力学的影响","authors":"Feng Jin,&nbsp;Laras Fadillah,&nbsp;Hung Quoc Nguyen,&nbsp;Torgeir Matre Sandvik,&nbsp;Yu Liu,&nbsp;Adrián García-Martín,&nbsp;Elena Salagre,&nbsp;Enrique G. Michel,&nbsp;Dragos Stoian,&nbsp;Kenneth Marshall,&nbsp;Wouter Van Beek,&nbsp;Günther Redhammer,&nbsp;Mir Mehraj Ud Din* and Daniel Rettenwander*,&nbsp;","doi":"10.1021/acs.chemmater.4c00515","DOIUrl":null,"url":null,"abstract":"<p >Li<sub>6</sub>PS<sub>5</sub>Cl has attracted significant attention due to its high Li-ion conductivity and processability, facilitating large-scale solid-state battery applications. However, when paired with high-voltage cathodes, it experiences adverse side reactions. Li<sub>3</sub>InCl<sub>6</sub> (LIC), known for its higher stability at high voltages and moderate Li-ion conductivity, is considered a catholyte to address the limitations of Li<sub>6</sub>PS<sub>5</sub>Cl. To extend the stability of Li<sub>6</sub>PS<sub>5</sub>Cl toward LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> (NCA), we applied nanocrystalline LIC as a 180 nm-thick protective coating in a core–shell-like fashion (LIC@NCA) via mechanofusion. Solid-state batteries with LIC@NCA allow an initial discharge specific capacity of 148 mA h/g at 0.1C and 80% capacity retention for 200 cycles at 0.2C with a cutoff voltage of 4.2 V (vs Li/Li<sup>+</sup>), while cells without LIC coating suffers from low initial discharge capacity and poor retention. Using a wide spectrum of advanced characterization techniques, such as operando XRD, XPS, FIB-SEM, and TOF-SIMS, we reveal that the superior performance of solid-state batteries employing LIC@NCA is related to the suppression of detrimental interfacial reactions of NCA with Li<sub>6</sub>PS<sub>5</sub>Cl, delamination, and particle cracking compared to uncoated NCA.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c00515","citationCount":"0","resultStr":"{\"title\":\"Elucidating the Impact of Li3InCl6-Coated LiNi0.8Co0.15Al0.05O2 on the Electro-Chemo-Mechanics of Li6PS5Cl-Based Solid-State Batteries\",\"authors\":\"Feng Jin,&nbsp;Laras Fadillah,&nbsp;Hung Quoc Nguyen,&nbsp;Torgeir Matre Sandvik,&nbsp;Yu Liu,&nbsp;Adrián García-Martín,&nbsp;Elena Salagre,&nbsp;Enrique G. Michel,&nbsp;Dragos Stoian,&nbsp;Kenneth Marshall,&nbsp;Wouter Van Beek,&nbsp;Günther Redhammer,&nbsp;Mir Mehraj Ud Din* and Daniel Rettenwander*,&nbsp;\",\"doi\":\"10.1021/acs.chemmater.4c00515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Li<sub>6</sub>PS<sub>5</sub>Cl has attracted significant attention due to its high Li-ion conductivity and processability, facilitating large-scale solid-state battery applications. However, when paired with high-voltage cathodes, it experiences adverse side reactions. Li<sub>3</sub>InCl<sub>6</sub> (LIC), known for its higher stability at high voltages and moderate Li-ion conductivity, is considered a catholyte to address the limitations of Li<sub>6</sub>PS<sub>5</sub>Cl. To extend the stability of Li<sub>6</sub>PS<sub>5</sub>Cl toward LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> (NCA), we applied nanocrystalline LIC as a 180 nm-thick protective coating in a core–shell-like fashion (LIC@NCA) via mechanofusion. Solid-state batteries with LIC@NCA allow an initial discharge specific capacity of 148 mA h/g at 0.1C and 80% capacity retention for 200 cycles at 0.2C with a cutoff voltage of 4.2 V (vs Li/Li<sup>+</sup>), while cells without LIC coating suffers from low initial discharge capacity and poor retention. Using a wide spectrum of advanced characterization techniques, such as operando XRD, XPS, FIB-SEM, and TOF-SIMS, we reveal that the superior performance of solid-state batteries employing LIC@NCA is related to the suppression of detrimental interfacial reactions of NCA with Li<sub>6</sub>PS<sub>5</sub>Cl, delamination, and particle cracking compared to uncoated NCA.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c00515\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00515\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00515","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Li6PS5Cl 具有高锂离子传导性和可加工性,有利于大规模固态电池应用,因此备受关注。然而,当它与高电压阴极配对时,会出现不良的副反应。Li3InCl6(LIC)因其在高电压下具有更高的稳定性和适中的锂离子传导性而闻名,被认为是解决 Li6PS5Cl 的局限性的一种阴极。为了提高 Li6PS5Cl 对 LiNi0.8Co0.15Al0.05O2(NCA)的稳定性,我们通过机械熔融法将纳米晶 LIC 作为 180 nm 厚的保护层(LIC@NCA)。含有 LIC@NCA 的固态电池在 0.1C 下的初始放电比容量为 148 mA h/g,在 0.2C 下循环 200 次的容量保持率为 80%,截止电压为 4.2 V(相对于 Li/Li+)。通过使用各种先进的表征技术,如操作X射线衍射、XPS、FIB-SEM和TOF-SIMS,我们发现,与未涂覆的NCA相比,采用LIC@NCA的固态电池的优异性能与抑制NCA与Li6PS5Cl的有害界面反应、分层和颗粒开裂有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elucidating the Impact of Li3InCl6-Coated LiNi0.8Co0.15Al0.05O2 on the Electro-Chemo-Mechanics of Li6PS5Cl-Based Solid-State Batteries

Li6PS5Cl has attracted significant attention due to its high Li-ion conductivity and processability, facilitating large-scale solid-state battery applications. However, when paired with high-voltage cathodes, it experiences adverse side reactions. Li3InCl6 (LIC), known for its higher stability at high voltages and moderate Li-ion conductivity, is considered a catholyte to address the limitations of Li6PS5Cl. To extend the stability of Li6PS5Cl toward LiNi0.8Co0.15Al0.05O2 (NCA), we applied nanocrystalline LIC as a 180 nm-thick protective coating in a core–shell-like fashion (LIC@NCA) via mechanofusion. Solid-state batteries with LIC@NCA allow an initial discharge specific capacity of 148 mA h/g at 0.1C and 80% capacity retention for 200 cycles at 0.2C with a cutoff voltage of 4.2 V (vs Li/Li+), while cells without LIC coating suffers from low initial discharge capacity and poor retention. Using a wide spectrum of advanced characterization techniques, such as operando XRD, XPS, FIB-SEM, and TOF-SIMS, we reveal that the superior performance of solid-state batteries employing LIC@NCA is related to the suppression of detrimental interfacial reactions of NCA with Li6PS5Cl, delamination, and particle cracking compared to uncoated NCA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Antiferromagnetic Ordering in the Frustrated Rare-Earth Chain Systems M2Cl3 (M = Gd, Tb) Advancing the Performance of Lithium-Rich Oxides in Concert with Inherent Complexities: Domain-Selective Substitutions Issue Editorial Masthead Issue Publication Information Data-Driven High-Throughput Screening and Experimental Realization of Ag2B(IV)B′(VI)O6 under Negative Chemical-Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1