{"title":"具有边界项耦合的宇宙流体","authors":"Christian G. Böhmer, Antonio d’Alfonso del Sordo","doi":"10.1007/s10714-024-03260-6","DOIUrl":null,"url":null,"abstract":"<div><p>Cosmological models can be studied effectively using dynamical systems techniques. Starting from Brown’s formulation of the variational principle for relativistic fluids, we introduce new types of couplings involving a perfect fluid, a scalar field, and boundary terms. We describe three different coupling models, one of which turns out to be particularly relevant for cosmology. Its behaviour is similar to that of models in which dark matter decays into dark energy. In particular, for a constant coupling, the model mimics well-known dynamical dark energy models while the non-constant couplings offer a rich dynamical structure, unseen before. We are able to achieve this richness whilst working in a two-dimensional phase space. This is a significant advantage which allows us to provide a clear physical interpretation of the key features and draw analogies with previously studied models.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03260-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Cosmological fluids with boundary term couplings\",\"authors\":\"Christian G. Böhmer, Antonio d’Alfonso del Sordo\",\"doi\":\"10.1007/s10714-024-03260-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cosmological models can be studied effectively using dynamical systems techniques. Starting from Brown’s formulation of the variational principle for relativistic fluids, we introduce new types of couplings involving a perfect fluid, a scalar field, and boundary terms. We describe three different coupling models, one of which turns out to be particularly relevant for cosmology. Its behaviour is similar to that of models in which dark matter decays into dark energy. In particular, for a constant coupling, the model mimics well-known dynamical dark energy models while the non-constant couplings offer a rich dynamical structure, unseen before. We are able to achieve this richness whilst working in a two-dimensional phase space. This is a significant advantage which allows us to provide a clear physical interpretation of the key features and draw analogies with previously studied models.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"56 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-024-03260-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-024-03260-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03260-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Cosmological models can be studied effectively using dynamical systems techniques. Starting from Brown’s formulation of the variational principle for relativistic fluids, we introduce new types of couplings involving a perfect fluid, a scalar field, and boundary terms. We describe three different coupling models, one of which turns out to be particularly relevant for cosmology. Its behaviour is similar to that of models in which dark matter decays into dark energy. In particular, for a constant coupling, the model mimics well-known dynamical dark energy models while the non-constant couplings offer a rich dynamical structure, unseen before. We are able to achieve this richness whilst working in a two-dimensional phase space. This is a significant advantage which allows us to provide a clear physical interpretation of the key features and draw analogies with previously studied models.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.