用于 RPL-IoT 网络拥塞控制的基于地理模糊子图的新型排序方法

Mohamed Sithik, Muthu Kumar
{"title":"用于 RPL-IoT 网络拥塞控制的基于地理模糊子图的新型排序方法","authors":"Mohamed Sithik, Muthu Kumar","doi":"10.17559/tv-20220829132003","DOIUrl":null,"url":null,"abstract":": Congestion control is among the most challenging tasks in enhancing QoS in the Internet of Things (IoT). Currently, wireless networks are able to have a large number of connections but with a limited amount of network resources. Consequently, congestion occurs, which adversely affects throughput, transmission delay, packet losses, power consumption management, and the lifespan of a network. This is certainly relevant in networks where transmissions are controlled by the Routing Protocol for Low-Power and Lossy Networks (RPL), which is commonly employed in the Internet of Things network. To solve this problem, a novel Geodetic fuzzy subgraph-based ranking (GFSR-RPL) for congestion control is proposed. Initially, the proposed GFSR-RPL selects the cluster head using K-means clustering. Then the rank calculation can be done via the final route setting for data transmission. A route setup scheme consists of three elements: 1) a Round Trip Time (RTT) estimator that assesses congestion conditions in a variety of ways; 2) a trend and relative strength indicator analysis; and 3) a geodetic fuzzy subgraph rank calculation method that calculates initial RTO (initial retransmission timeouts) accurately. The proposed GFSR-RPL method reduces the energy consumption of up to 43.58%, 25.8%, 14.82% and 6.85% than existing methods such as RPR, CBR-RPL, ACW and ECLRPL.","PeriodicalId":510054,"journal":{"name":"Tehnicki vjesnik - Technical Gazette","volume":"11 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Geodetic Fuzzy Subgraph-Based Ranking for Congestion Control in RPL-IoT Network\",\"authors\":\"Mohamed Sithik, Muthu Kumar\",\"doi\":\"10.17559/tv-20220829132003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Congestion control is among the most challenging tasks in enhancing QoS in the Internet of Things (IoT). Currently, wireless networks are able to have a large number of connections but with a limited amount of network resources. Consequently, congestion occurs, which adversely affects throughput, transmission delay, packet losses, power consumption management, and the lifespan of a network. This is certainly relevant in networks where transmissions are controlled by the Routing Protocol for Low-Power and Lossy Networks (RPL), which is commonly employed in the Internet of Things network. To solve this problem, a novel Geodetic fuzzy subgraph-based ranking (GFSR-RPL) for congestion control is proposed. Initially, the proposed GFSR-RPL selects the cluster head using K-means clustering. Then the rank calculation can be done via the final route setting for data transmission. A route setup scheme consists of three elements: 1) a Round Trip Time (RTT) estimator that assesses congestion conditions in a variety of ways; 2) a trend and relative strength indicator analysis; and 3) a geodetic fuzzy subgraph rank calculation method that calculates initial RTO (initial retransmission timeouts) accurately. The proposed GFSR-RPL method reduces the energy consumption of up to 43.58%, 25.8%, 14.82% and 6.85% than existing methods such as RPR, CBR-RPL, ACW and ECLRPL.\",\"PeriodicalId\":510054,\"journal\":{\"name\":\"Tehnicki vjesnik - Technical Gazette\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tehnicki vjesnik - Technical Gazette\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17559/tv-20220829132003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki vjesnik - Technical Gazette","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17559/tv-20220829132003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:拥塞控制是提高物联网(IoT)服务质量的最具挑战性的任务之一。目前,无线网络能够拥有大量连接,但网络资源有限。因此,拥塞现象时有发生,对吞吐量、传输延迟、数据包丢失、功耗管理和网络寿命造成不利影响。这当然与由低功耗和低损耗网络路由协议(RPL)控制传输的网络有关,物联网网络通常采用这种路由协议。为解决这一问题,我们提出了一种用于拥塞控制的新型基于地理模糊子图的排序(GFSR-RPL)。首先,所提出的 GFSR-RPL 使用 K-means 聚类来选择簇头。然后,可通过数据传输的最终路由设置进行排名计算。路由设置方案由三个要素组成:1)往返时间(RTT)估算器,可通过多种方式评估拥塞状况;2)趋势和相对强度指标分析;3)大地模糊子图等级计算方法,可精确计算初始 RTO(初始重传超时)。与 RPR、CBR-RPL、ACW 和 ECLRPL 等现有方法相比,所提出的 GFSR-RPL 方法最多可减少 43.58%、25.8%、14.82% 和 6.85% 的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Geodetic Fuzzy Subgraph-Based Ranking for Congestion Control in RPL-IoT Network
: Congestion control is among the most challenging tasks in enhancing QoS in the Internet of Things (IoT). Currently, wireless networks are able to have a large number of connections but with a limited amount of network resources. Consequently, congestion occurs, which adversely affects throughput, transmission delay, packet losses, power consumption management, and the lifespan of a network. This is certainly relevant in networks where transmissions are controlled by the Routing Protocol for Low-Power and Lossy Networks (RPL), which is commonly employed in the Internet of Things network. To solve this problem, a novel Geodetic fuzzy subgraph-based ranking (GFSR-RPL) for congestion control is proposed. Initially, the proposed GFSR-RPL selects the cluster head using K-means clustering. Then the rank calculation can be done via the final route setting for data transmission. A route setup scheme consists of three elements: 1) a Round Trip Time (RTT) estimator that assesses congestion conditions in a variety of ways; 2) a trend and relative strength indicator analysis; and 3) a geodetic fuzzy subgraph rank calculation method that calculates initial RTO (initial retransmission timeouts) accurately. The proposed GFSR-RPL method reduces the energy consumption of up to 43.58%, 25.8%, 14.82% and 6.85% than existing methods such as RPR, CBR-RPL, ACW and ECLRPL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Annotation Method of Gangue Data Based on Digital Image Processing Determination of FreeCarbon Dioxide Emissions in Mineral Fertilizers Production Novel Geodetic Fuzzy Subgraph-Based Ranking for Congestion Control in RPL-IoT Network Study and Optimization of Ethanol (LRF) Juliflora Biodiesel (HRF) Fuelled RCCI Engine with and without EGR System Research on Damage Detection of Civil Structures Based on Machine Learning of Multiple Vegetation Index Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1