能源行业诱发地震的上限震级

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geophysical Prospecting Pub Date : 2024-06-15 DOI:10.1111/1365-2478.13553
Ngoc-Tuyen Cao, Leo Eisner, Zuzana Jechumtálová, James Verdon, Umair Bin Waheed
{"title":"能源行业诱发地震的上限震级","authors":"Ngoc-Tuyen Cao,&nbsp;Leo Eisner,&nbsp;Zuzana Jechumtálová,&nbsp;James Verdon,&nbsp;Umair Bin Waheed","doi":"10.1111/1365-2478.13553","DOIUrl":null,"url":null,"abstract":"<p>We adopt extreme value theory to estimate the upper limit of the next record-breaking magnitudes of induced seismic events. The methodology is based on order statistics and does not rely on knowledge of the state of the subsurface reservoir or injection strategy. The estimation depends on the history of record-breaking events produced by the anthropogenic activities. We apply the methodology to three different types of industrial operations: natural gas production, saltwater disposal and hydraulic fracturing. We show that the upper limit estimate provides a reliable and realistic upper bound for magnitudes of the record-breaking events in investigated datasets including 15 publicly available datasets. The predicted magnitudes do not overestimate the observed magnitudes by more than 1.0 magnitude unit and underestimation is rare, probably resulting from insufficient sampling of the statistical distribution of the induced seismicity. The richest dataset, sourced from downhole and surface monitoring of the Preston New Road hydraulic fracturing, provides reliable estimates of the magnitudes over three orders of magnitudes with only slight underprediction of the largest observed event. While the detection of weaker events improves the performance of the method, we show that it can be applied even with a few observed record-breaking events to provide reliable estimates of magnitudes. However, care must be taken to ensure that event catalogues are estimated consistently across a range of magnitudes.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper limit magnitudes for induced seismicity in energy industries\",\"authors\":\"Ngoc-Tuyen Cao,&nbsp;Leo Eisner,&nbsp;Zuzana Jechumtálová,&nbsp;James Verdon,&nbsp;Umair Bin Waheed\",\"doi\":\"10.1111/1365-2478.13553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We adopt extreme value theory to estimate the upper limit of the next record-breaking magnitudes of induced seismic events. The methodology is based on order statistics and does not rely on knowledge of the state of the subsurface reservoir or injection strategy. The estimation depends on the history of record-breaking events produced by the anthropogenic activities. We apply the methodology to three different types of industrial operations: natural gas production, saltwater disposal and hydraulic fracturing. We show that the upper limit estimate provides a reliable and realistic upper bound for magnitudes of the record-breaking events in investigated datasets including 15 publicly available datasets. The predicted magnitudes do not overestimate the observed magnitudes by more than 1.0 magnitude unit and underestimation is rare, probably resulting from insufficient sampling of the statistical distribution of the induced seismicity. The richest dataset, sourced from downhole and surface monitoring of the Preston New Road hydraulic fracturing, provides reliable estimates of the magnitudes over three orders of magnitudes with only slight underprediction of the largest observed event. While the detection of weaker events improves the performance of the method, we show that it can be applied even with a few observed record-breaking events to provide reliable estimates of magnitudes. However, care must be taken to ensure that event catalogues are estimated consistently across a range of magnitudes.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13553\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13553","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们采用极值理论来估计下一次破纪录的诱发地震事件的震级上限。该方法基于阶次统计,不依赖于对地下储层状态或注入策略的了解。估算取决于人为活动所产生的破纪录事件的历史。我们将该方法应用于三种不同类型的工业作业:天然气生产、盐水处理和水力压裂。我们的研究表明,在包括 15 个公开数据集在内的调查数据集中,上限估计值为破纪录事件的规模提供了一个可靠且现实的上限。预测震级对观测震级的高估不超过 1.0 个震级单位,低估的情况很少发生,这可能是由于对诱发地震的统计分布取样不足造成的。最丰富的数据集来自对普雷斯顿新路水力压裂的井下和地面监测,提供了三个数量级以上震级的可靠估计,仅对最大观测事件略有低估。虽然对较弱事件的检测提高了该方法的性能,但我们表明,即使只有几个观测到的破纪录事件,该方法也能提供可靠的震级估计。不过,必须注意确保事件星表的估算在一定的震级范围内保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Upper limit magnitudes for induced seismicity in energy industries

We adopt extreme value theory to estimate the upper limit of the next record-breaking magnitudes of induced seismic events. The methodology is based on order statistics and does not rely on knowledge of the state of the subsurface reservoir or injection strategy. The estimation depends on the history of record-breaking events produced by the anthropogenic activities. We apply the methodology to three different types of industrial operations: natural gas production, saltwater disposal and hydraulic fracturing. We show that the upper limit estimate provides a reliable and realistic upper bound for magnitudes of the record-breaking events in investigated datasets including 15 publicly available datasets. The predicted magnitudes do not overestimate the observed magnitudes by more than 1.0 magnitude unit and underestimation is rare, probably resulting from insufficient sampling of the statistical distribution of the induced seismicity. The richest dataset, sourced from downhole and surface monitoring of the Preston New Road hydraulic fracturing, provides reliable estimates of the magnitudes over three orders of magnitudes with only slight underprediction of the largest observed event. While the detection of weaker events improves the performance of the method, we show that it can be applied even with a few observed record-breaking events to provide reliable estimates of magnitudes. However, care must be taken to ensure that event catalogues are estimated consistently across a range of magnitudes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
期刊最新文献
Issue Information Simultaneous inversion of four physical parameters of hydrate reservoir for high accuracy porosity estimation A mollifier approach to seismic data representation Analytic solutions for effective elastic moduli of isotropic solids containing oblate spheroid pores with critical porosity An efficient pseudoelastic pure P-mode wave equation and the implementation of the free surface boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1