用于脉冲信号自动去噪的集合经验模式分解

Zhiyuan Li, Mingju Yao
{"title":"用于脉冲信号自动去噪的集合经验模式分解","authors":"Zhiyuan Li, Mingju Yao","doi":"10.17559/tv-20230922000953","DOIUrl":null,"url":null,"abstract":": Pulse signals are often corrupted by noise, compromising signal integrity for downstream analysis. This paper presents an automated denoising technique for pulse waveforms using ensemble empirical mode decomposition (EEMD). The EEMD algorithm decomposes the signal into intrinsic mode functions (IMFs). Statistical metrics of IMF energy and entropy identify noise components for targeted removal via nonlinear filtering. Experiments on simulated pulse echoes demonstrated the approach of accurately eliminated noise regions. Compared to wavelet decomposition and Monte Carlo methods, the EEMD technique exhibited superior noise reduction and over 90% faster processing. This ensemble empirical mode decomposition approach provides an efficient, data-driven methodology for denoising pulse waveforms with applications in biomedical signal analysis.","PeriodicalId":510054,"journal":{"name":"Tehnicki vjesnik - Technical Gazette","volume":"7 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble Empirical Mode Decomposition for Automated Denoising of Pulse Signals\",\"authors\":\"Zhiyuan Li, Mingju Yao\",\"doi\":\"10.17559/tv-20230922000953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Pulse signals are often corrupted by noise, compromising signal integrity for downstream analysis. This paper presents an automated denoising technique for pulse waveforms using ensemble empirical mode decomposition (EEMD). The EEMD algorithm decomposes the signal into intrinsic mode functions (IMFs). Statistical metrics of IMF energy and entropy identify noise components for targeted removal via nonlinear filtering. Experiments on simulated pulse echoes demonstrated the approach of accurately eliminated noise regions. Compared to wavelet decomposition and Monte Carlo methods, the EEMD technique exhibited superior noise reduction and over 90% faster processing. This ensemble empirical mode decomposition approach provides an efficient, data-driven methodology for denoising pulse waveforms with applications in biomedical signal analysis.\",\"PeriodicalId\":510054,\"journal\":{\"name\":\"Tehnicki vjesnik - Technical Gazette\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tehnicki vjesnik - Technical Gazette\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17559/tv-20230922000953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki vjesnik - Technical Gazette","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17559/tv-20230922000953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:脉冲信号经常受到噪声干扰,影响下游分析的信号完整性。本文介绍了一种利用集合经验模式分解(EEMD)对脉冲波形进行自动去噪的技术。EEMD 算法将信号分解为固有模式函数(IMF)。IMF 能量和熵的统计指标可识别噪声成分,通过非线性滤波有针对性地去除噪声成分。对模拟脉冲回波的实验表明,该方法能准确消除噪声区域。与小波分解和蒙特卡罗方法相比,EEMD 技术的降噪效果更佳,处理速度提高了 90% 以上。这种集合经验模式分解方法为生物医学信号分析中应用的脉冲波形去噪提供了一种高效、数据驱动的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble Empirical Mode Decomposition for Automated Denoising of Pulse Signals
: Pulse signals are often corrupted by noise, compromising signal integrity for downstream analysis. This paper presents an automated denoising technique for pulse waveforms using ensemble empirical mode decomposition (EEMD). The EEMD algorithm decomposes the signal into intrinsic mode functions (IMFs). Statistical metrics of IMF energy and entropy identify noise components for targeted removal via nonlinear filtering. Experiments on simulated pulse echoes demonstrated the approach of accurately eliminated noise regions. Compared to wavelet decomposition and Monte Carlo methods, the EEMD technique exhibited superior noise reduction and over 90% faster processing. This ensemble empirical mode decomposition approach provides an efficient, data-driven methodology for denoising pulse waveforms with applications in biomedical signal analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Annotation Method of Gangue Data Based on Digital Image Processing Determination of FreeCarbon Dioxide Emissions in Mineral Fertilizers Production Novel Geodetic Fuzzy Subgraph-Based Ranking for Congestion Control in RPL-IoT Network Study and Optimization of Ethanol (LRF) Juliflora Biodiesel (HRF) Fuelled RCCI Engine with and without EGR System Research on Damage Detection of Civil Structures Based on Machine Learning of Multiple Vegetation Index Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1