用于机载不确定大气建模的降维技术

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Spacecraft and Rockets Pub Date : 2024-06-14 DOI:10.2514/1.a35839
Samuel W. Albert, Alireza Doostan, Hanspeter Schaub
{"title":"用于机载不确定大气建模的降维技术","authors":"Samuel W. Albert, Alireza Doostan, Hanspeter Schaub","doi":"10.2514/1.a35839","DOIUrl":null,"url":null,"abstract":"Onboard density models are a key aspect of closed-loop guidance systems for hypersonic flight. Traditional approaches model density as a deterministic function of altitude, but a recent drive toward stochastic guidance approaches motivates onboard uncertainty propagation. Existing solutions for efficient uncertainty propagation generally treat density as an exponential function of altitude, but this approach is limited in its ability to capture relevant dispersions. This work models density as a Gaussian random field that is approximated by a Karhunen–Loève expansion, enabling a relatively high-fidelity, finite-dimensional parametric representation. Alternative models are also developed using a variational autoencoder architecture, resulting in greater dimensionality reduction at the expense of analytical description. Normalization schemes are presented and compared by their efficiency in capturing density variability in a limited number of terms, and normalization by reference dynamic pressure is shown to be the most compact approach. The model alternatives are compared both by their approximations of density itself and by their predictions of peak heat flux for dispersed direct-entry and aerocapture trajectories. An extension of this approach for modeling density as a function of multiple independent variables is also presented and demonstrated. Finally, it is shown that the Karhunen–Loève density model can be sequentially updated according to noisy density observations by formulating the problem as a Kalman measurement function.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensionality Reduction for Onboard Modeling of Uncertain Atmospheres\",\"authors\":\"Samuel W. Albert, Alireza Doostan, Hanspeter Schaub\",\"doi\":\"10.2514/1.a35839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Onboard density models are a key aspect of closed-loop guidance systems for hypersonic flight. Traditional approaches model density as a deterministic function of altitude, but a recent drive toward stochastic guidance approaches motivates onboard uncertainty propagation. Existing solutions for efficient uncertainty propagation generally treat density as an exponential function of altitude, but this approach is limited in its ability to capture relevant dispersions. This work models density as a Gaussian random field that is approximated by a Karhunen–Loève expansion, enabling a relatively high-fidelity, finite-dimensional parametric representation. Alternative models are also developed using a variational autoencoder architecture, resulting in greater dimensionality reduction at the expense of analytical description. Normalization schemes are presented and compared by their efficiency in capturing density variability in a limited number of terms, and normalization by reference dynamic pressure is shown to be the most compact approach. The model alternatives are compared both by their approximations of density itself and by their predictions of peak heat flux for dispersed direct-entry and aerocapture trajectories. An extension of this approach for modeling density as a function of multiple independent variables is also presented and demonstrated. Finally, it is shown that the Karhunen–Loève density model can be sequentially updated according to noisy density observations by formulating the problem as a Kalman measurement function.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35839\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35839","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

机载密度模型是高超音速飞行闭环制导系统的一个关键方面。传统方法将密度建模为高度的确定性函数,但最近对随机制导方法的推动促进了机载不确定性传播。现有的高效不确定性传播解决方案通常将密度视为高度的指数函数,但这种方法在捕捉相关分散性方面能力有限。这项工作将密度建模为高斯随机场,并通过卡尔胡宁-洛埃夫展开进行近似,从而实现了相对高保真的有限维参数表示。此外,还使用变异自动编码器架构开发了其他模型,从而在牺牲分析描述的前提下更大程度地降低了维度。提出了归一化方案,并根据其在捕捉有限项密度变化方面的效率进行了比较,结果表明,通过参考动态压力进行归一化是最简洁的方法。通过对密度本身的近似以及对分散直接进入轨迹和空气捕获轨迹的峰值热通量的预测,对模型替代方案进行了比较。此外,还介绍并演示了将密度建模为多个独立变量函数的扩展方法。最后,通过将问题表述为卡尔曼测量函数,证明卡尔胡宁-洛埃夫密度模型可以根据噪声密度观测结果进行连续更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dimensionality Reduction for Onboard Modeling of Uncertain Atmospheres
Onboard density models are a key aspect of closed-loop guidance systems for hypersonic flight. Traditional approaches model density as a deterministic function of altitude, but a recent drive toward stochastic guidance approaches motivates onboard uncertainty propagation. Existing solutions for efficient uncertainty propagation generally treat density as an exponential function of altitude, but this approach is limited in its ability to capture relevant dispersions. This work models density as a Gaussian random field that is approximated by a Karhunen–Loève expansion, enabling a relatively high-fidelity, finite-dimensional parametric representation. Alternative models are also developed using a variational autoencoder architecture, resulting in greater dimensionality reduction at the expense of analytical description. Normalization schemes are presented and compared by their efficiency in capturing density variability in a limited number of terms, and normalization by reference dynamic pressure is shown to be the most compact approach. The model alternatives are compared both by their approximations of density itself and by their predictions of peak heat flux for dispersed direct-entry and aerocapture trajectories. An extension of this approach for modeling density as a function of multiple independent variables is also presented and demonstrated. Finally, it is shown that the Karhunen–Loève density model can be sequentially updated according to noisy density observations by formulating the problem as a Kalman measurement function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spacecraft and Rockets
Journal of Spacecraft and Rockets 工程技术-工程:宇航
CiteScore
3.60
自引率
18.80%
发文量
185
审稿时长
4.5 months
期刊介绍: This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
期刊最新文献
Dimensionality Reduction for Onboard Modeling of Uncertain Atmospheres Experimental Observations on Film Cooling Effectiveness on Aerodynamic Heating in Hypersonic Flow Dynamic Modeling and Experimental Analysis of Aerospace Equipment Attached Using Reclosable Fasteners Lunar Infrastructure via Multiscale Granular Stacking Orbital Tolerance and Intrinsic Orbital Capacity for Electric Propulsion Constellations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1