离子导电率和传递数的简化通用方程

Meenesh R. Singh, Priyanka G Singh, V. V. Gande, Rohit Chauhan, Nitin Minocha
{"title":"离子导电率和传递数的简化通用方程","authors":"Meenesh R. Singh, Priyanka G Singh, V. V. Gande, Rohit Chauhan, Nitin Minocha","doi":"10.1149/1945-7111/ad586c","DOIUrl":null,"url":null,"abstract":"\n Nernst-Einstein equation can provide a reasonable estimate of the ionic conductivity of dilute solutions. For concentrated solutions, alternate methods such as Green-Kubo relations and Einstein relations are more suitable to account for ion-ion interactions. Such computations can be expensive for multicomponent systems. Simplified mathematical expressions like the Nernst-Einstein equation do not exist for concentrated multicomponent mixtures. Newman's treatment of multicomponent concentrated solutions yields a conductivity relation in terms of species concentration and Onsager phenomenological coefficients. However, the estimation of these phenomenological coefficients is not straightforward. Here, mathematical formulations that relate the phenomenological coefficients with the friction coefficients are developed, leading to simplified, ready-to-use expressions of conductivity and transference numbers that can be used for a wide range of ionic mixtures. This approach involves spectral decomposition of the matrix of Onsager phenomenological coefficients. The general analytical expressions for conductivity and transference number are simplified for binary electrolytes, and numerical solutions are provided for ternary and quaternary mixtures with ion dissociation.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified Universal Equations for Ionic Conductivity and Transference Number\",\"authors\":\"Meenesh R. Singh, Priyanka G Singh, V. V. Gande, Rohit Chauhan, Nitin Minocha\",\"doi\":\"10.1149/1945-7111/ad586c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Nernst-Einstein equation can provide a reasonable estimate of the ionic conductivity of dilute solutions. For concentrated solutions, alternate methods such as Green-Kubo relations and Einstein relations are more suitable to account for ion-ion interactions. Such computations can be expensive for multicomponent systems. Simplified mathematical expressions like the Nernst-Einstein equation do not exist for concentrated multicomponent mixtures. Newman's treatment of multicomponent concentrated solutions yields a conductivity relation in terms of species concentration and Onsager phenomenological coefficients. However, the estimation of these phenomenological coefficients is not straightforward. Here, mathematical formulations that relate the phenomenological coefficients with the friction coefficients are developed, leading to simplified, ready-to-use expressions of conductivity and transference numbers that can be used for a wide range of ionic mixtures. This approach involves spectral decomposition of the matrix of Onsager phenomenological coefficients. The general analytical expressions for conductivity and transference number are simplified for binary electrolytes, and numerical solutions are provided for ternary and quaternary mixtures with ion dissociation.\",\"PeriodicalId\":509718,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad586c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad586c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内斯特-爱因斯坦方程可以对稀释溶液的离子电导率进行合理估算。对于浓溶液,格林-久保关系和爱因斯坦关系等替代方法更适合考虑离子间的相互作用。对于多组分系统来说,这种计算可能会很昂贵。对于浓度较高的多组分混合物来说,并不存在像内斯特-爱因斯坦方程这样的简化数学表达式。纽曼对多组分浓溶液的处理方法是根据物种浓度和昂萨格现象系数得出电导率关系。然而,这些现象系数的估算并不简单。在此,我们提出了将现象系数与摩擦系数联系起来的数学公式,从而简化了电导率和转移数的表达式,并可用于多种离子混合物。这种方法涉及对昂萨格现象系数矩阵进行频谱分解。对于二元电解质,简化了电导率和转移数的一般分析表达式;对于有离子解离的三元和四元混合物,提供了数值解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simplified Universal Equations for Ionic Conductivity and Transference Number
Nernst-Einstein equation can provide a reasonable estimate of the ionic conductivity of dilute solutions. For concentrated solutions, alternate methods such as Green-Kubo relations and Einstein relations are more suitable to account for ion-ion interactions. Such computations can be expensive for multicomponent systems. Simplified mathematical expressions like the Nernst-Einstein equation do not exist for concentrated multicomponent mixtures. Newman's treatment of multicomponent concentrated solutions yields a conductivity relation in terms of species concentration and Onsager phenomenological coefficients. However, the estimation of these phenomenological coefficients is not straightforward. Here, mathematical formulations that relate the phenomenological coefficients with the friction coefficients are developed, leading to simplified, ready-to-use expressions of conductivity and transference numbers that can be used for a wide range of ionic mixtures. This approach involves spectral decomposition of the matrix of Onsager phenomenological coefficients. The general analytical expressions for conductivity and transference number are simplified for binary electrolytes, and numerical solutions are provided for ternary and quaternary mixtures with ion dissociation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing Cold Sintering to Fabricate Composite Polymer Electrolytes - A Paradigm Shift in Organic-Inorganic Material Assembly Investigating Plastic Deformation Between Silicon and Solid Electrolyte in All-Solid-State Batteries Using Operando X-ray Tomography Mild and Fast Chemical Presodiation of Na0.44MnO2 Facile Synthesis of U2Ti Intermetallic by Direct Electrochemical Reduction of UO2-TiO2 Composite in LiCl-Li2O Melt Binderless Electrodeposited NiCo2S4-MWCNT as a Potential Anode Material for Sodium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1