用废铜线纤维加固的石英粉包覆反应粉末混凝土的性能

Saif Ibrahim Hendi, N. Aljalawi
{"title":"用废铜线纤维加固的石英粉包覆反应粉末混凝土的性能","authors":"Saif Ibrahim Hendi, N. Aljalawi","doi":"10.4028/p-kal7os","DOIUrl":null,"url":null,"abstract":"In order to maintain long-term environmental quality, sustainable environmental practices are defined as a system that prevents the exhaustion or degradation of natural assets. By pursuing environmental sustainability, we might assure that the necessary criteria for the present the general populace is content without endangering the potential of upcoming generations to satisfy their private desires. Engineers working in the concrete industry are becoming more and more interested in sustainable development, which includes using locally accessible resources as well as industrial and agricultural left-over in the structure sector being among the probable remedies for the issues with the economy and the environment. After establishing the ideal replacement ratio, this study examined the impact of partial cement replacement with quartz residue (0, 10, 20, and 30%) by weight at several ages on (compressive strength). By means of steam curing for five hours at 90°C after the sample has already hardened, this ideal proportion is utilized to discover its impact on a few properties (like dry density, flexural, and compressive strength) of reactive powder concrete covering 1% recycled copper fibers (RCF). To acquire a compressive strength of 95 MPa next 28 days, reactive powder concrete (RPC) been produced using resident cement, superplasticizer, and silica fume through a W/C proportion of 0.2. The outcomes exhibited that using quartz powder replacing (20%) increased the RPC's compressive strength in 8.5%, flexural strength by means of 9%, dry density in 0.61% at 28 days following comparison of the test grades to the reference mixture.","PeriodicalId":10603,"journal":{"name":"Construction Technologies and Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of Reactive Powder Concrete Covering Quartz Powder Strengthened by Electrical Waste Copper Wire Fiber\",\"authors\":\"Saif Ibrahim Hendi, N. Aljalawi\",\"doi\":\"10.4028/p-kal7os\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to maintain long-term environmental quality, sustainable environmental practices are defined as a system that prevents the exhaustion or degradation of natural assets. By pursuing environmental sustainability, we might assure that the necessary criteria for the present the general populace is content without endangering the potential of upcoming generations to satisfy their private desires. Engineers working in the concrete industry are becoming more and more interested in sustainable development, which includes using locally accessible resources as well as industrial and agricultural left-over in the structure sector being among the probable remedies for the issues with the economy and the environment. After establishing the ideal replacement ratio, this study examined the impact of partial cement replacement with quartz residue (0, 10, 20, and 30%) by weight at several ages on (compressive strength). By means of steam curing for five hours at 90°C after the sample has already hardened, this ideal proportion is utilized to discover its impact on a few properties (like dry density, flexural, and compressive strength) of reactive powder concrete covering 1% recycled copper fibers (RCF). To acquire a compressive strength of 95 MPa next 28 days, reactive powder concrete (RPC) been produced using resident cement, superplasticizer, and silica fume through a W/C proportion of 0.2. The outcomes exhibited that using quartz powder replacing (20%) increased the RPC's compressive strength in 8.5%, flexural strength by means of 9%, dry density in 0.61% at 28 days following comparison of the test grades to the reference mixture.\",\"PeriodicalId\":10603,\"journal\":{\"name\":\"Construction Technologies and Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction Technologies and Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-kal7os\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Technologies and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-kal7os","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了保持长期的环境质量,可持续的环境实践被定义为一种防止自然资产枯竭或退化的系统。通过追求环境的可持续发展,我们可以确保满足当代大众的必要标准,同时又不危及后代满足其私欲的潜力。混凝土行业的工程师们对可持续发展越来越感兴趣,其中包括利用当地可获得的资源以及结构部门的工农业剩余物,这些都是解决经济和环境问题的可能方法之一。在确定了理想的替代比例后,本研究考察了在不同龄期用石英渣(0、10、20 和 30%)替代部分水泥对(抗压强度)的影响。在试样硬化后,通过在 90°C 温度下蒸汽养护 5 小时,利用这一理想比例来发现它对覆盖 1%再生铜纤维(RCF)的活性粉末混凝土的一些性能(如干密度、抗弯强度和抗压强度)的影响。为了在 28 天后获得 95 兆帕的抗压强度,使用常量水泥、超塑化剂和硅灰以 0.2 的 W/C 比例生产了活性粉末混凝土(RPC)。结果表明,将石英粉取代(20%)后,RPC 的抗压强度提高了 8.5%,抗折强度提高了 9%,28 天后的干密度提高了 0.61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Behavior of Reactive Powder Concrete Covering Quartz Powder Strengthened by Electrical Waste Copper Wire Fiber
In order to maintain long-term environmental quality, sustainable environmental practices are defined as a system that prevents the exhaustion or degradation of natural assets. By pursuing environmental sustainability, we might assure that the necessary criteria for the present the general populace is content without endangering the potential of upcoming generations to satisfy their private desires. Engineers working in the concrete industry are becoming more and more interested in sustainable development, which includes using locally accessible resources as well as industrial and agricultural left-over in the structure sector being among the probable remedies for the issues with the economy and the environment. After establishing the ideal replacement ratio, this study examined the impact of partial cement replacement with quartz residue (0, 10, 20, and 30%) by weight at several ages on (compressive strength). By means of steam curing for five hours at 90°C after the sample has already hardened, this ideal proportion is utilized to discover its impact on a few properties (like dry density, flexural, and compressive strength) of reactive powder concrete covering 1% recycled copper fibers (RCF). To acquire a compressive strength of 95 MPa next 28 days, reactive powder concrete (RPC) been produced using resident cement, superplasticizer, and silica fume through a W/C proportion of 0.2. The outcomes exhibited that using quartz powder replacing (20%) increased the RPC's compressive strength in 8.5%, flexural strength by means of 9%, dry density in 0.61% at 28 days following comparison of the test grades to the reference mixture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lantana Camara Plant-Biochar Added Cementitious Mortar for Carbon Sequestration: Effect on Early-Age Properties An Experimental Study on the Mechanical Properties of Concrete by Using Human Hair Fiber as Reinforcement Designing a Material Database for the Flood-Resistant Housing An Experimental Study on Mechanical Properties of Concrete by Using Various Types of Coarse Aggregates of Different Quarries Progressive Pushover Analysis of a Reinforced Concrete Bridge of Pakistan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1