金纳米粒子表面阳离子金属络合物的自组装

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-06-14 DOI:10.1021/acsomega.4c04098
Cássio Roberto Arantes do Prado, Matheus Henrique de Oliveira Pessoa, Lucas da Silva dos Santos, Aline da Silva Xavier da Cruz, Luís Rogério Dinelli and André Luiz Bogado*, 
{"title":"金纳米粒子表面阳离子金属络合物的自组装","authors":"Cássio Roberto Arantes do Prado,&nbsp;Matheus Henrique de Oliveira Pessoa,&nbsp;Lucas da Silva dos Santos,&nbsp;Aline da Silva Xavier da Cruz,&nbsp;Luís Rogério Dinelli and André Luiz Bogado*,&nbsp;","doi":"10.1021/acsomega.4c04098","DOIUrl":null,"url":null,"abstract":"<p >This work aims to study the interaction between cationic metal complexes (M<i><sup>z</sup></i><sup>+</sup>) and gold nanoparticles (AuNPs<i><sup>z–</sup></i>). The M<i><sup>z</sup></i><sup>+</sup> complexes were chosen from previous works described in the literature and were synthesized as defined. For example, they are as follows: <b>1</b> = [RuCl(dppb)(bipy)(py)](PF<sub>6</sub>); <b>2</b> = [RuCl(dppb)(bipy)(vpy)](PF<sub>6</sub>); <b>3</b> = [RuCl(dppb)(bipy)(mepy)](PF<sub>6</sub>); <b>4</b> = [RuCl(dppb)(bipy)(<i>t</i>bpy)](PF<sub>6</sub>); <b>5</b> = [RuCl<sub>2</sub>(dppb)(bipy)](PF<sub>6</sub>); <b>6</b> = [Fe(bipy)<sub>3</sub>]Cl<sub>2</sub>; <b>7</b> = [Ru(bipy)<sub>3</sub>](PF<sub>6</sub>)<sub>2</sub>; <b>8</b> = [TPyP{RuCl(dppb)(bipy)}<sub>4</sub>](PF<sub>6</sub>)<sub>4</sub>; and <b>9</b> = [RuCl(<i>p</i>-cymene)(Di<i>i</i>pmp)](PF<sub>6</sub>). The interactions between M<i><sup>z</sup></i><sup>+</sup> and AuNPs<i><sup>z–</sup></i> were carried out using conductometry and UV–vis spectroscopy. These experiments allowed determination of kinetic parameters, revealing three different steps in the interaction process: induction time, flocculation, and agglomeration. The self-assembly between M<i><sup>z</sup></i><sup>+</sup> and AuNPs<sup><i>z</i>–</sup> was investigated using three different models of binding site, namely, Langmuir or direct plot, Benesi–Hildebrand, and Scatchard. These models provide the fraction of total binding sites occupied (θ), the formation constant (<i>K</i><sub>f</sub>), which is dependent on the temperature and geometric structure of each group of M<i><sup>z</sup></i><sup>+</sup>, and the Gibbs free energy of reaction (Δ<i>G</i><sub><i>r</i></sub>), which was negative for each pair of M<i><sup>z</sup></i><sup>+</sup> and AuNPs<i><sup>z–</sup></i>, revealing a spontaneous agglomeration process. The Hill coefficient (<i>n</i>) was 1 for almost all complexes, indicating that agglomeration is an independent process, except for <b>5</b>, where <i>n</i> = 2, suggesting a positive propensity to bind onto the AuNPs<i><sup>z–</sup></i> surface. The models have confirmed a noncovalent interaction between these species. The relative error in site binding does not show any variation with changes in the temperature, but a fine-tuning of the <i>n</i> value to 1.00 was observed with the increase of the temperature. Finally, the reduction reaction of the 4-nitrophenolate anion (4-NP<sup>–</sup>) by NaBH<sub>4</sub> catalyzed by AuNPs<i><sup>z–</sup></i> was used in the presence of M<i><sup>z</sup></i><sup>+</sup> as an evaluation test to show how the M<i><sup>z</sup></i><sup>+</sup> species will disturb the 4-NP<sup>–</sup> binding site on the surface of gold nanoparticles.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c04098","citationCount":"0","resultStr":"{\"title\":\"The Self-Assembly of Cationic Metal Complexes on Gold Nanoparticle Surface\",\"authors\":\"Cássio Roberto Arantes do Prado,&nbsp;Matheus Henrique de Oliveira Pessoa,&nbsp;Lucas da Silva dos Santos,&nbsp;Aline da Silva Xavier da Cruz,&nbsp;Luís Rogério Dinelli and André Luiz Bogado*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c04098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work aims to study the interaction between cationic metal complexes (M<i><sup>z</sup></i><sup>+</sup>) and gold nanoparticles (AuNPs<i><sup>z–</sup></i>). The M<i><sup>z</sup></i><sup>+</sup> complexes were chosen from previous works described in the literature and were synthesized as defined. For example, they are as follows: <b>1</b> = [RuCl(dppb)(bipy)(py)](PF<sub>6</sub>); <b>2</b> = [RuCl(dppb)(bipy)(vpy)](PF<sub>6</sub>); <b>3</b> = [RuCl(dppb)(bipy)(mepy)](PF<sub>6</sub>); <b>4</b> = [RuCl(dppb)(bipy)(<i>t</i>bpy)](PF<sub>6</sub>); <b>5</b> = [RuCl<sub>2</sub>(dppb)(bipy)](PF<sub>6</sub>); <b>6</b> = [Fe(bipy)<sub>3</sub>]Cl<sub>2</sub>; <b>7</b> = [Ru(bipy)<sub>3</sub>](PF<sub>6</sub>)<sub>2</sub>; <b>8</b> = [TPyP{RuCl(dppb)(bipy)}<sub>4</sub>](PF<sub>6</sub>)<sub>4</sub>; and <b>9</b> = [RuCl(<i>p</i>-cymene)(Di<i>i</i>pmp)](PF<sub>6</sub>). The interactions between M<i><sup>z</sup></i><sup>+</sup> and AuNPs<i><sup>z–</sup></i> were carried out using conductometry and UV–vis spectroscopy. These experiments allowed determination of kinetic parameters, revealing three different steps in the interaction process: induction time, flocculation, and agglomeration. The self-assembly between M<i><sup>z</sup></i><sup>+</sup> and AuNPs<sup><i>z</i>–</sup> was investigated using three different models of binding site, namely, Langmuir or direct plot, Benesi–Hildebrand, and Scatchard. These models provide the fraction of total binding sites occupied (θ), the formation constant (<i>K</i><sub>f</sub>), which is dependent on the temperature and geometric structure of each group of M<i><sup>z</sup></i><sup>+</sup>, and the Gibbs free energy of reaction (Δ<i>G</i><sub><i>r</i></sub>), which was negative for each pair of M<i><sup>z</sup></i><sup>+</sup> and AuNPs<i><sup>z–</sup></i>, revealing a spontaneous agglomeration process. The Hill coefficient (<i>n</i>) was 1 for almost all complexes, indicating that agglomeration is an independent process, except for <b>5</b>, where <i>n</i> = 2, suggesting a positive propensity to bind onto the AuNPs<i><sup>z–</sup></i> surface. The models have confirmed a noncovalent interaction between these species. The relative error in site binding does not show any variation with changes in the temperature, but a fine-tuning of the <i>n</i> value to 1.00 was observed with the increase of the temperature. Finally, the reduction reaction of the 4-nitrophenolate anion (4-NP<sup>–</sup>) by NaBH<sub>4</sub> catalyzed by AuNPs<i><sup>z–</sup></i> was used in the presence of M<i><sup>z</sup></i><sup>+</sup> as an evaluation test to show how the M<i><sup>z</sup></i><sup>+</sup> species will disturb the 4-NP<sup>–</sup> binding site on the surface of gold nanoparticles.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c04098\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c04098\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c04098","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作旨在研究阳离子金属配合物(Mz+)与金纳米粒子(AuNPsz-)之间的相互作用。Mz+ 复合物选自以往文献中描述的作品,并按照定义合成。例如,它们如下1 = [RuCl(dppb)(bipy)(py)](PF6); 2 = [RuCl(dppb)(bipy)(vpy)](PF6); 3 = [RuCl(dppb)(bipy)(mepy)](PF6); 4 = [RuCl(dppb)(bipy)(tbpy)](PF6);5 = [RuCl2(dppb)(bipy)](PF6); 6 = [Fe(bipy)3]Cl2; 7 = [Ru(bipy)3](PF6)2; 8 = [TPyP{RuCl(dppb)(bipy)}4](PF6)4;以及 9 = [RuCl(p-氰基)(Diipmp)](PF6)。Mz+ 和 AuNPsz- 之间的相互作用是通过电导率测定法和紫外-可见光谱法进行的。这些实验确定了动力学参数,揭示了相互作用过程中的三个不同步骤:诱导时间、絮凝和团聚。使用三种不同的结合位点模型,即朗缪尔或直接图、贝内斯-希尔德布兰德和斯卡查德模型,对 Mz+ 和 AuNPsz- 之间的自组装进行了研究。这些模型提供了总结合位点所占的比例(θ)、形成常数(Kf)(取决于温度和每组 Mz+ 的几何结构)以及反应的吉布斯自由能(ΔGr),每对 Mz+ 和 AuNPsz- 的吉布斯自由能均为负值,揭示了一个自发的聚结过程。几乎所有复合物的希尔系数(n)都是 1,表明团聚是一个独立的过程,只有 5 号复合物例外,其 n = 2,表明其在 AuNPsz- 表面的结合倾向为正。模型证实了这些物种之间的非共价相互作用。位点结合的相对误差没有随着温度的变化而变化,但随着温度的升高,n 值微调至 1.00。最后,在 Mz+ 存在的情况下,以 AuNPsz- 催化 NaBH4 对 4-硝基苯酚阴离子(4-NP-)的还原反应作为评估测试,说明 Mz+ 物种会如何干扰金纳米粒子表面的 4-NP- 结合位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Self-Assembly of Cationic Metal Complexes on Gold Nanoparticle Surface

This work aims to study the interaction between cationic metal complexes (Mz+) and gold nanoparticles (AuNPsz–). The Mz+ complexes were chosen from previous works described in the literature and were synthesized as defined. For example, they are as follows: 1 = [RuCl(dppb)(bipy)(py)](PF6); 2 = [RuCl(dppb)(bipy)(vpy)](PF6); 3 = [RuCl(dppb)(bipy)(mepy)](PF6); 4 = [RuCl(dppb)(bipy)(tbpy)](PF6); 5 = [RuCl2(dppb)(bipy)](PF6); 6 = [Fe(bipy)3]Cl2; 7 = [Ru(bipy)3](PF6)2; 8 = [TPyP{RuCl(dppb)(bipy)}4](PF6)4; and 9 = [RuCl(p-cymene)(Diipmp)](PF6). The interactions between Mz+ and AuNPsz– were carried out using conductometry and UV–vis spectroscopy. These experiments allowed determination of kinetic parameters, revealing three different steps in the interaction process: induction time, flocculation, and agglomeration. The self-assembly between Mz+ and AuNPsz was investigated using three different models of binding site, namely, Langmuir or direct plot, Benesi–Hildebrand, and Scatchard. These models provide the fraction of total binding sites occupied (θ), the formation constant (Kf), which is dependent on the temperature and geometric structure of each group of Mz+, and the Gibbs free energy of reaction (ΔGr), which was negative for each pair of Mz+ and AuNPsz–, revealing a spontaneous agglomeration process. The Hill coefficient (n) was 1 for almost all complexes, indicating that agglomeration is an independent process, except for 5, where n = 2, suggesting a positive propensity to bind onto the AuNPsz– surface. The models have confirmed a noncovalent interaction between these species. The relative error in site binding does not show any variation with changes in the temperature, but a fine-tuning of the n value to 1.00 was observed with the increase of the temperature. Finally, the reduction reaction of the 4-nitrophenolate anion (4-NP) by NaBH4 catalyzed by AuNPsz– was used in the presence of Mz+ as an evaluation test to show how the Mz+ species will disturb the 4-NP binding site on the surface of gold nanoparticles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Investigation of an Indian Site with Mafic Rock for Carbon Sequestration Characterization of Nanoparticles in Ethanolic Suspension Using Single Particle Inductively Coupled Plasma Mass Spectrometry: Application for Cementitious Systems Polysaccharide Hydroxyapatite (Nano)composites and Their Biomedical Applications: An Overview of Recent Years
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1