基于瞪羚行为的两种新启发式算法的详细比较

Emine Baş
{"title":"基于瞪羚行为的两种新启发式算法的详细比较","authors":"Emine Baş","doi":"10.16984/saufenbilder.1399655","DOIUrl":null,"url":null,"abstract":"In this study, Mountain Gazelle Optimization (MGO) and Gazelle Optimization Algorithm (GOA) algorithms, which have been newly proposed in recent years, were examined. Although MGO and GOA are different heuristic algorithms, they are often considered the same algorithms by researchers. This study was conducted to resolve this confusion and demonstrate the discovery and exploitation success of both algorithms. While MGO developed the exploration and exploitation ability by being inspired by the behavior of gazelles living in different groups, GOA model was developed by being inspired by the behavior of gazelles in escaping from predators, reaching safe environments and grazing in safe environments. MGO and GOA were tested on 13 classical benchmark functions in seven different dimensions and their success was compared. According to the results, MGO is more successful than GOA in all dimensions. GOA, on the other hand, works faster than MGO. Additionally, MGO and GOA were tested on three different engineering design problems. While MGO was more successful in the tension/compression spring design problem and welded beam design problems, GOA achieved better results in the pressure vessel design problem. The results show that MGO improves the ability to explore and avoid local traps better than GOA. MGO and GOA are also compared with three different heuristic algorithms selected from the literature (GSO, COA, and ZOA). According to the results, MGO has shown that it can compete with new algorithms in the literature. GOA, on the other hand, lags behind comparison algorithms.","PeriodicalId":21468,"journal":{"name":"Sakarya University Journal of Science","volume":"32 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Detailed Comparison of Two New Heuristic Algorithms Based on Gazelles Behavior\",\"authors\":\"Emine Baş\",\"doi\":\"10.16984/saufenbilder.1399655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, Mountain Gazelle Optimization (MGO) and Gazelle Optimization Algorithm (GOA) algorithms, which have been newly proposed in recent years, were examined. Although MGO and GOA are different heuristic algorithms, they are often considered the same algorithms by researchers. This study was conducted to resolve this confusion and demonstrate the discovery and exploitation success of both algorithms. While MGO developed the exploration and exploitation ability by being inspired by the behavior of gazelles living in different groups, GOA model was developed by being inspired by the behavior of gazelles in escaping from predators, reaching safe environments and grazing in safe environments. MGO and GOA were tested on 13 classical benchmark functions in seven different dimensions and their success was compared. According to the results, MGO is more successful than GOA in all dimensions. GOA, on the other hand, works faster than MGO. Additionally, MGO and GOA were tested on three different engineering design problems. While MGO was more successful in the tension/compression spring design problem and welded beam design problems, GOA achieved better results in the pressure vessel design problem. The results show that MGO improves the ability to explore and avoid local traps better than GOA. MGO and GOA are also compared with three different heuristic algorithms selected from the literature (GSO, COA, and ZOA). According to the results, MGO has shown that it can compete with new algorithms in the literature. GOA, on the other hand, lags behind comparison algorithms.\",\"PeriodicalId\":21468,\"journal\":{\"name\":\"Sakarya University Journal of Science\",\"volume\":\"32 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16984/saufenbilder.1399655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16984/saufenbilder.1399655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究对近年来新提出的山地瞪羚优化算法(MGO)和瞪羚优化算法(GOA)进行了研究。虽然 MGO 和 GOA 是不同的启发式算法,但研究人员通常认为它们是相同的算法。本研究旨在解决这一混淆,并展示这两种算法在发现和利用方面的成功经验。MGO 是受到生活在不同群体中的瞪羚行为的启发而开发出探索和利用能力的,而 GOA 模型则是受到瞪羚逃避捕食者、到达安全环境和在安全环境中吃草的行为的启发而开发的。对 MGO 和 GOA 在七个不同维度上的 13 个经典基准函数进行了测试,并比较了它们的成功率。结果显示,MGO 在所有维度上都比 GOA 更成功。另一方面,GOA 比 MGO 运行得更快。此外,MGO 和 GOA 还在三个不同的工程设计问题上进行了测试。MGO 在拉伸/压缩弹簧设计问题和焊接梁设计问题上更为成功,而 GOA 则在压力容器设计问题上取得了更好的结果。结果表明,MGO 比 GOA 更好地提高了探索和避免局部陷阱的能力。MGO 和 GOA 还与从文献中选取的三种不同的启发式算法(GSO、COA 和 ZOA)进行了比较。结果表明,MGO 可以与文献中的新算法相媲美。而 GOA 则落后于比较算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Detailed Comparison of Two New Heuristic Algorithms Based on Gazelles Behavior
In this study, Mountain Gazelle Optimization (MGO) and Gazelle Optimization Algorithm (GOA) algorithms, which have been newly proposed in recent years, were examined. Although MGO and GOA are different heuristic algorithms, they are often considered the same algorithms by researchers. This study was conducted to resolve this confusion and demonstrate the discovery and exploitation success of both algorithms. While MGO developed the exploration and exploitation ability by being inspired by the behavior of gazelles living in different groups, GOA model was developed by being inspired by the behavior of gazelles in escaping from predators, reaching safe environments and grazing in safe environments. MGO and GOA were tested on 13 classical benchmark functions in seven different dimensions and their success was compared. According to the results, MGO is more successful than GOA in all dimensions. GOA, on the other hand, works faster than MGO. Additionally, MGO and GOA were tested on three different engineering design problems. While MGO was more successful in the tension/compression spring design problem and welded beam design problems, GOA achieved better results in the pressure vessel design problem. The results show that MGO improves the ability to explore and avoid local traps better than GOA. MGO and GOA are also compared with three different heuristic algorithms selected from the literature (GSO, COA, and ZOA). According to the results, MGO has shown that it can compete with new algorithms in the literature. GOA, on the other hand, lags behind comparison algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Detailed Comparison of Two New Heuristic Algorithms Based on Gazelles Behavior Determination of Pesticide Residues in Water Using Extraction Method Developing an optimization model for minimizing solid waste collection costs Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites Evaluation of the Antigenotoxic Effect of Quercetin Against Antiepileptic Drug Genotoxicity by Comet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1