研究无人潜航器悬挂系统对远程操纵系统摄像机运动的影响

Arkadiusz Rubiec, Mirosław Przybysz, M. Łopatka, Ł. Rykała, P. Krogul, K. Cieślik, R. Typiak
{"title":"研究无人潜航器悬挂系统对远程操纵系统摄像机运动的影响","authors":"Arkadiusz Rubiec, Mirosław Przybysz, M. Łopatka, Ł. Rykała, P. Krogul, K. Cieślik, R. Typiak","doi":"10.14313/par_252/53","DOIUrl":null,"url":null,"abstract":"In the following article, the results of a study on the impact of the suspension system used in Unmanned Ground Vehicles (UGVs) on the kinematic excitation of cameras in teleoperation systems are presented. As indicated by preliminary reconnaissance studies, these excitations significantly affect the operator’s ability to perceive the environment and recognize images while driving. Currently, there is a lack of publications and guidelines in the literature regarding the design of UGV suspensions and their evaluation in terms of improving operator perception in teleoperation systems. The studies were conducted in a simulated environment using multibody systems, where various suspension structure variants were developed. The tests were carried out on the ISO 5008 rough test track. The evaluation of the tested suspension structures was carried out using a proprietary method, enabling parametric analysis and the selection of favorable solutions for improving image recognition by the UGV operator. Future research can focus on adjustment of the UGV suspension characteristics which could have significant influence on situational awareness and the operator’s ability to act effectively, especially during dynamic missions.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":"48 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Influence of an UGV Suspension System on Camera Motion of the Teleoperation System\",\"authors\":\"Arkadiusz Rubiec, Mirosław Przybysz, M. Łopatka, Ł. Rykała, P. Krogul, K. Cieślik, R. Typiak\",\"doi\":\"10.14313/par_252/53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the following article, the results of a study on the impact of the suspension system used in Unmanned Ground Vehicles (UGVs) on the kinematic excitation of cameras in teleoperation systems are presented. As indicated by preliminary reconnaissance studies, these excitations significantly affect the operator’s ability to perceive the environment and recognize images while driving. Currently, there is a lack of publications and guidelines in the literature regarding the design of UGV suspensions and their evaluation in terms of improving operator perception in teleoperation systems. The studies were conducted in a simulated environment using multibody systems, where various suspension structure variants were developed. The tests were carried out on the ISO 5008 rough test track. The evaluation of the tested suspension structures was carried out using a proprietary method, enabling parametric analysis and the selection of favorable solutions for improving image recognition by the UGV operator. Future research can focus on adjustment of the UGV suspension characteristics which could have significant influence on situational awareness and the operator’s ability to act effectively, especially during dynamic missions.\",\"PeriodicalId\":383231,\"journal\":{\"name\":\"Pomiary Automatyka Robotyka\",\"volume\":\"48 40\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pomiary Automatyka Robotyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/par_252/53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pomiary Automatyka Robotyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/par_252/53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下文介绍了无人地面车辆(UGV)使用的悬挂系统对远程操纵系统中摄像机运动激励影响的研究结果。初步勘测研究表明,这些激励严重影响了操作员在驾驶过程中感知环境和识别图像的能力。目前,文献中缺乏有关 UGV 悬挂设计及其在改善远程操纵系统操作员感知方面的评估的出版物和指南。研究是在使用多体系统的模拟环境中进行的,其中开发了各种悬挂结构变体。测试在 ISO 5008 粗糙测试轨道上进行。使用专有方法对测试的悬挂结构进行了评估,从而能够进行参数分析,并选择有利的解决方案来提高 UGV 操作员的图像识别能力。未来的研究可侧重于调整无人潜航器的悬挂特性,这可能会对态势感知和操作员的有效行动能力产生重大影响,尤其是在执行动态任务期间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the Influence of an UGV Suspension System on Camera Motion of the Teleoperation System
In the following article, the results of a study on the impact of the suspension system used in Unmanned Ground Vehicles (UGVs) on the kinematic excitation of cameras in teleoperation systems are presented. As indicated by preliminary reconnaissance studies, these excitations significantly affect the operator’s ability to perceive the environment and recognize images while driving. Currently, there is a lack of publications and guidelines in the literature regarding the design of UGV suspensions and their evaluation in terms of improving operator perception in teleoperation systems. The studies were conducted in a simulated environment using multibody systems, where various suspension structure variants were developed. The tests were carried out on the ISO 5008 rough test track. The evaluation of the tested suspension structures was carried out using a proprietary method, enabling parametric analysis and the selection of favorable solutions for improving image recognition by the UGV operator. Future research can focus on adjustment of the UGV suspension characteristics which could have significant influence on situational awareness and the operator’s ability to act effectively, especially during dynamic missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of Selected Calibration Methods for a Thermal Imaging Camera with a Cooled Detector Operating in the MWIR Range A Method of Measurement of Minimum Resolvable Temperature Difference as a Function of Magnification and Defocusing of a Thermal Camera Study on the Influence of an UGV Suspension System on Camera Motion of the Teleoperation System Tuning the Heading Controller for the Ship’s Autopilot Generation of Spatial Terrain Using the Hermes Editor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1