高速行驶车辆在轮轨接触低有效同轴度情况下的车身狩猎行为

Biao Zheng, Lai Wei, Jing Zeng, Caihong Huang
{"title":"高速行驶车辆在轮轨接触低有效同轴度情况下的车身狩猎行为","authors":"Biao Zheng, Lai Wei, Jing Zeng, Caihong Huang","doi":"10.1177/09544097241262395","DOIUrl":null,"url":null,"abstract":"In the past, bogie hunting instability garnered more attention due to its potential for causing serious safety issues. However, with the rise in high-speed vehicle speeds and operational mileage, the concerns arising from carbody hunting can no longer be overlooked. This article investigates the causes and solutions for low-frequency carbody swaying under low effective conicity in wheel-rail contact, employing a combination of experimental and numerical techniques. Initially, the study involves an in-depth analysis of time-domain signals from lateral and vertical accelerations of the carbody and bogie frame during a high-speed train field-test. The carbody vibration mode resulting from carbody hunting displays a swaying motion at a frequency of 1.5 Hz. Subsequently, a dynamic system model of the high-speed vehicle was established and the suspension mode of the model were verified. The frequency of the carbody upper sway motion is determined to be 1.39 Hz. Low effective conicity is induced when grinding wheel match with new rail or new wheel match with grinding rail. Under this low effective conicity, the hunting frequency of the vehicle is around 1.5 Hz, close to the frequency of the carbody upper sway motion. The coincidence of the hunting frequency and the upper sway motion frequency leads to the low-frequency swaying of the carbody. At last, the effects of wheel profiles, rail profiles and suspension parameters on the carbody hunting have been studied. The study demonstrates that addressing low-frequency carbody swaying can be achieved through targeted rail grinding. This process involves modifying the rail profile while ensuring careful grinding of the rail inner corner. Furthermore, it has been confirmed in the article that replacing suitable yaw dampers is also effective.","PeriodicalId":515695,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit","volume":"76 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbody hunting behaviour of high speed vehicles in low effective conicity of wheel-rail contact\",\"authors\":\"Biao Zheng, Lai Wei, Jing Zeng, Caihong Huang\",\"doi\":\"10.1177/09544097241262395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past, bogie hunting instability garnered more attention due to its potential for causing serious safety issues. However, with the rise in high-speed vehicle speeds and operational mileage, the concerns arising from carbody hunting can no longer be overlooked. This article investigates the causes and solutions for low-frequency carbody swaying under low effective conicity in wheel-rail contact, employing a combination of experimental and numerical techniques. Initially, the study involves an in-depth analysis of time-domain signals from lateral and vertical accelerations of the carbody and bogie frame during a high-speed train field-test. The carbody vibration mode resulting from carbody hunting displays a swaying motion at a frequency of 1.5 Hz. Subsequently, a dynamic system model of the high-speed vehicle was established and the suspension mode of the model were verified. The frequency of the carbody upper sway motion is determined to be 1.39 Hz. Low effective conicity is induced when grinding wheel match with new rail or new wheel match with grinding rail. Under this low effective conicity, the hunting frequency of the vehicle is around 1.5 Hz, close to the frequency of the carbody upper sway motion. The coincidence of the hunting frequency and the upper sway motion frequency leads to the low-frequency swaying of the carbody. At last, the effects of wheel profiles, rail profiles and suspension parameters on the carbody hunting have been studied. The study demonstrates that addressing low-frequency carbody swaying can be achieved through targeted rail grinding. This process involves modifying the rail profile while ensuring careful grinding of the rail inner corner. Furthermore, it has been confirmed in the article that replacing suitable yaw dampers is also effective.\",\"PeriodicalId\":515695,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit\",\"volume\":\"76 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544097241262395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544097241262395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过去,转向架追尾不稳定性因其可能导致严重的安全问题而受到更多关注。然而,随着高速车辆速度和运营里程的增加,车体打滑引起的问题已不容忽视。本文采用实验和数值技术相结合的方法,研究了轮轨接触低有效同轴度下低频车体摇摆的原因和解决方案。研究首先对高速列车现场试验中车体和转向架框架的横向和纵向加速度时域信号进行了深入分析。车体打猎产生的车体振动模式表现为频率为 1.5 Hz 的摇摆运动。随后,建立了高速车辆的动态系统模型,并对模型的悬挂模式进行了验证。车身上部摇摆运动的频率被确定为 1.39 Hz。当砂轮与新轨道匹配或新砂轮与砂轮轨道匹配时,会产生低有效同轴度。在这种低有效同轴度下,车辆的狩猎频率约为 1.5 Hz,接近车体上部摇摆运动的频率。狩猎频率和上摇摆运动频率的重合导致了车体的低频摇摆。最后,还研究了车轮轮廓、轨道轮廓和悬挂参数对车身猎动的影响。研究表明,可以通过有针对性的轨道打磨来解决低频车体摇摆问题。这一过程包括修改轨道轮廓,同时确保对轨道内角进行仔细打磨。此外,文章还证实,更换合适的偏航阻尼器也很有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbody hunting behaviour of high speed vehicles in low effective conicity of wheel-rail contact
In the past, bogie hunting instability garnered more attention due to its potential for causing serious safety issues. However, with the rise in high-speed vehicle speeds and operational mileage, the concerns arising from carbody hunting can no longer be overlooked. This article investigates the causes and solutions for low-frequency carbody swaying under low effective conicity in wheel-rail contact, employing a combination of experimental and numerical techniques. Initially, the study involves an in-depth analysis of time-domain signals from lateral and vertical accelerations of the carbody and bogie frame during a high-speed train field-test. The carbody vibration mode resulting from carbody hunting displays a swaying motion at a frequency of 1.5 Hz. Subsequently, a dynamic system model of the high-speed vehicle was established and the suspension mode of the model were verified. The frequency of the carbody upper sway motion is determined to be 1.39 Hz. Low effective conicity is induced when grinding wheel match with new rail or new wheel match with grinding rail. Under this low effective conicity, the hunting frequency of the vehicle is around 1.5 Hz, close to the frequency of the carbody upper sway motion. The coincidence of the hunting frequency and the upper sway motion frequency leads to the low-frequency swaying of the carbody. At last, the effects of wheel profiles, rail profiles and suspension parameters on the carbody hunting have been studied. The study demonstrates that addressing low-frequency carbody swaying can be achieved through targeted rail grinding. This process involves modifying the rail profile while ensuring careful grinding of the rail inner corner. Furthermore, it has been confirmed in the article that replacing suitable yaw dampers is also effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling tamping effectiveness for track geometry longitudinal levelling defects Carbody hunting behaviour of high speed vehicles in low effective conicity of wheel-rail contact Field investigation on the effect of the tamping machine and dynamic track stabilizer on changing the rail support modulus High–speed train crash safety assessment for Train–moose collisions An investigation into the constitutive relation of corrugated metro rail material based on nano-indentation experiment and inverse analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1