{"title":"金头鲷摄入含有棕榈油、菜籽油和亚麻籽油等不同植物油混合物膳食的幽门盲肠和近端肠道的氧化状态","authors":"Irene García-Meilán, Ramon Fontanillas, Joaquim Gutiérrez, Encarnación Capilla, Isabel Navarro, Á. Gallardo","doi":"10.3390/fishes9060228","DOIUrl":null,"url":null,"abstract":"Nowadays, including vegetable ingredients in fish diets without growth effects is common; however, their intestinal oxidative status under these conditions is less known. Five isonitrogenous and isolipidic diets with 75% vegetable oil (VO) inclusion were formulated for juvenile gilthead sea bream (Sparus aurata). As VO, one diet contained palm oil (diet P), another rapeseed oil (diet R), and the other three included linseed oil (L) combined with the above-mentioned VOs (named PL, RL and RPL diets). After 18 weeks, pyloric caeca (PC) and proximal intestine (PI) were analyzed for oxidative stress biomarkers, lipid peroxidation (LPO), and gene expression. Dietary linseed oil diminished the superoxide dismutase activity in both intestinal regions, catalase in PC and glutathione reductase in PI; rapeseed oil reduced the glutathione peroxidase (GPx) and glutathione-S-transferase activities in PC, and palm oil upregulated GPx activity in PI. The PL diet triggered LPO levels in the PI, and RPL-fed fish showed the highest levels of LPO in the PC due to lower antioxidant activities, while RL-fed fish presented the best oxidative status. The results suggest that the dietary amount of n-6 and the unsaturated/saturated fatty acids ratio are factors to be considered in aquafeed formulation, including VOs, to improve the intestinal oxidative status in fish.","PeriodicalId":12405,"journal":{"name":"Fishes","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidative Status of the Pyloric Caeca and Proximal Intestine in Gilthead Sea Bream Fed Diets Including Different Vegetable Oil Blends from Palm, Rapeseed and Linseed\",\"authors\":\"Irene García-Meilán, Ramon Fontanillas, Joaquim Gutiérrez, Encarnación Capilla, Isabel Navarro, Á. Gallardo\",\"doi\":\"10.3390/fishes9060228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, including vegetable ingredients in fish diets without growth effects is common; however, their intestinal oxidative status under these conditions is less known. Five isonitrogenous and isolipidic diets with 75% vegetable oil (VO) inclusion were formulated for juvenile gilthead sea bream (Sparus aurata). As VO, one diet contained palm oil (diet P), another rapeseed oil (diet R), and the other three included linseed oil (L) combined with the above-mentioned VOs (named PL, RL and RPL diets). After 18 weeks, pyloric caeca (PC) and proximal intestine (PI) were analyzed for oxidative stress biomarkers, lipid peroxidation (LPO), and gene expression. Dietary linseed oil diminished the superoxide dismutase activity in both intestinal regions, catalase in PC and glutathione reductase in PI; rapeseed oil reduced the glutathione peroxidase (GPx) and glutathione-S-transferase activities in PC, and palm oil upregulated GPx activity in PI. The PL diet triggered LPO levels in the PI, and RPL-fed fish showed the highest levels of LPO in the PC due to lower antioxidant activities, while RL-fed fish presented the best oxidative status. The results suggest that the dietary amount of n-6 and the unsaturated/saturated fatty acids ratio are factors to be considered in aquafeed formulation, including VOs, to improve the intestinal oxidative status in fish.\",\"PeriodicalId\":12405,\"journal\":{\"name\":\"Fishes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fishes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fishes9060228\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fishes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fishes9060228","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Oxidative Status of the Pyloric Caeca and Proximal Intestine in Gilthead Sea Bream Fed Diets Including Different Vegetable Oil Blends from Palm, Rapeseed and Linseed
Nowadays, including vegetable ingredients in fish diets without growth effects is common; however, their intestinal oxidative status under these conditions is less known. Five isonitrogenous and isolipidic diets with 75% vegetable oil (VO) inclusion were formulated for juvenile gilthead sea bream (Sparus aurata). As VO, one diet contained palm oil (diet P), another rapeseed oil (diet R), and the other three included linseed oil (L) combined with the above-mentioned VOs (named PL, RL and RPL diets). After 18 weeks, pyloric caeca (PC) and proximal intestine (PI) were analyzed for oxidative stress biomarkers, lipid peroxidation (LPO), and gene expression. Dietary linseed oil diminished the superoxide dismutase activity in both intestinal regions, catalase in PC and glutathione reductase in PI; rapeseed oil reduced the glutathione peroxidase (GPx) and glutathione-S-transferase activities in PC, and palm oil upregulated GPx activity in PI. The PL diet triggered LPO levels in the PI, and RPL-fed fish showed the highest levels of LPO in the PC due to lower antioxidant activities, while RL-fed fish presented the best oxidative status. The results suggest that the dietary amount of n-6 and the unsaturated/saturated fatty acids ratio are factors to be considered in aquafeed formulation, including VOs, to improve the intestinal oxidative status in fish.