多分量地震数据在确定四川盆地白云岩储层中的应用

IF 1.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysics and Engineering Pub Date : 2024-06-14 DOI:10.1093/jge/gxae068
Kang Chen, Guangzhi Zhang, Guidong Di, Xin Guo, Long Wen, Qi Ran, Hualing Ma, Juncheng Dai
{"title":"多分量地震数据在确定四川盆地白云岩储层中的应用","authors":"Kang Chen, Guangzhi Zhang, Guidong Di, Xin Guo, Long Wen, Qi Ran, Hualing Ma, Juncheng Dai","doi":"10.1093/jge/gxae068","DOIUrl":null,"url":null,"abstract":"\n A comprehensive drilling of wells has been conducted in the Permian Qixia Formation in the central Sichuan Basin, revealing a significant number of dolomite reservoirs. High- and medium-porosity dolomite reservoirs are the main gas-producing reservoirs in the Qixia Formation. Seismic PP-wave data show a ‘bright spot’ for high-porosity dolomite reservoir formations but weak responses for medium-porosity dolomite reservoir formations, which is attributed to the inability of P waves to distinguish between medium-porosity reservoirs and limestone. However, medium-porosity dolomite and limestone have different S-wave velocities. Therefore, in this study, the identification of different-porosity dolomite reservoirs using multi-component seismic data was investigated. A comprehensive analysis of the elastic waves by forward modeling shows that the PS-wave amplitude is more sensitive to medium-porosity dolomite than the PP-wave amplitude. Therefore, medium-porosity dolomite reservoirs can be predicted using the amplitude attributes of the PS wave, and high-porosity dolomite reservoirs can be characterized using the PP wave. Meanwhile, the elastic parameter λρ (the product of Lame constant λ and density ρ), which is highly correlated with the dolomite content, can be used as an indicator of dolomite formations. Furthermore, compared to the results of PP-wave inversion, the elastic parameters derived from the joint inversion of PP- and PS-waves exhibited a better correspondence with the well-logging results. The comprehensive use of the seismic amplitude responses of PP and PS waves and multi-component seismic joint inversion can effectively predict high- and medium-porosity dolomite reservoirs. The predicted results can support the exploration and development of the Qixia Formation.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of multi-component seismic data in identifying dolomite reservoirs in the Sichuan Basin\",\"authors\":\"Kang Chen, Guangzhi Zhang, Guidong Di, Xin Guo, Long Wen, Qi Ran, Hualing Ma, Juncheng Dai\",\"doi\":\"10.1093/jge/gxae068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A comprehensive drilling of wells has been conducted in the Permian Qixia Formation in the central Sichuan Basin, revealing a significant number of dolomite reservoirs. High- and medium-porosity dolomite reservoirs are the main gas-producing reservoirs in the Qixia Formation. Seismic PP-wave data show a ‘bright spot’ for high-porosity dolomite reservoir formations but weak responses for medium-porosity dolomite reservoir formations, which is attributed to the inability of P waves to distinguish between medium-porosity reservoirs and limestone. However, medium-porosity dolomite and limestone have different S-wave velocities. Therefore, in this study, the identification of different-porosity dolomite reservoirs using multi-component seismic data was investigated. A comprehensive analysis of the elastic waves by forward modeling shows that the PS-wave amplitude is more sensitive to medium-porosity dolomite than the PP-wave amplitude. Therefore, medium-porosity dolomite reservoirs can be predicted using the amplitude attributes of the PS wave, and high-porosity dolomite reservoirs can be characterized using the PP wave. Meanwhile, the elastic parameter λρ (the product of Lame constant λ and density ρ), which is highly correlated with the dolomite content, can be used as an indicator of dolomite formations. Furthermore, compared to the results of PP-wave inversion, the elastic parameters derived from the joint inversion of PP- and PS-waves exhibited a better correspondence with the well-logging results. The comprehensive use of the seismic amplitude responses of PP and PS waves and multi-component seismic joint inversion can effectively predict high- and medium-porosity dolomite reservoirs. The predicted results can support the exploration and development of the Qixia Formation.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxae068\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae068","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

对四川盆地中部二叠系栖霞地层进行了全面钻探,发现了大量白云岩储层。高、中孔隙度白云岩储层是栖霞地层的主要产气储层。地震 PP 波数据显示,高孔隙度白云岩储层有 "亮点",但中孔隙度白云岩储层的响应较弱,这是因为 P 波无法区分中孔隙度储层和石灰岩。然而,中等孔隙度白云岩和石灰岩的 S 波速度不同。因此,本研究利用多分量地震数据对不同孔隙度的白云岩储层进行了识别。通过正演模型对弹性波的综合分析表明,PS 波振幅对中孔隙度白云岩比 PP 波振幅更敏感。因此,可以利用 PS 波的振幅属性预测中孔隙度白云岩储层,利用 PP 波描述高孔隙度白云岩储层。同时,与白云岩含量高度相关的弹性参数λρ(拉美常数λ与密度ρ的乘积)可作为白云岩地层的指标。此外,与 PP 波反演结果相比,PP 波和 PS 波联合反演得出的弹性参数与测井结果的对应关系更好。综合利用PP波和PS波的地震振幅响应和多分量地震联合反演,可以有效预测高、中孔隙度白云岩储层。预测结果可为栖霞地层的勘探开发提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of multi-component seismic data in identifying dolomite reservoirs in the Sichuan Basin
A comprehensive drilling of wells has been conducted in the Permian Qixia Formation in the central Sichuan Basin, revealing a significant number of dolomite reservoirs. High- and medium-porosity dolomite reservoirs are the main gas-producing reservoirs in the Qixia Formation. Seismic PP-wave data show a ‘bright spot’ for high-porosity dolomite reservoir formations but weak responses for medium-porosity dolomite reservoir formations, which is attributed to the inability of P waves to distinguish between medium-porosity reservoirs and limestone. However, medium-porosity dolomite and limestone have different S-wave velocities. Therefore, in this study, the identification of different-porosity dolomite reservoirs using multi-component seismic data was investigated. A comprehensive analysis of the elastic waves by forward modeling shows that the PS-wave amplitude is more sensitive to medium-porosity dolomite than the PP-wave amplitude. Therefore, medium-porosity dolomite reservoirs can be predicted using the amplitude attributes of the PS wave, and high-porosity dolomite reservoirs can be characterized using the PP wave. Meanwhile, the elastic parameter λρ (the product of Lame constant λ and density ρ), which is highly correlated with the dolomite content, can be used as an indicator of dolomite formations. Furthermore, compared to the results of PP-wave inversion, the elastic parameters derived from the joint inversion of PP- and PS-waves exhibited a better correspondence with the well-logging results. The comprehensive use of the seismic amplitude responses of PP and PS waves and multi-component seismic joint inversion can effectively predict high- and medium-porosity dolomite reservoirs. The predicted results can support the exploration and development of the Qixia Formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysics and Engineering
Journal of Geophysics and Engineering 工程技术-地球化学与地球物理
CiteScore
2.50
自引率
21.40%
发文量
87
审稿时长
4 months
期刊介绍: Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.
期刊最新文献
Numerical simulations of the acoustic and electrical properties of digital rocks based on tetrahedral unstructured mesh Simulation study on the radioactive logging responses in the spiral borehole Kirchhoff Prestack time migration of crooked-line seismic data 2-D acoustic equation prestack reverse-time migration based on optimized combined compact difference scheme Bayesian linearized inversion for petrophysical and pore-connectivity parameters with seismic elastic data of carbonate reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1