使用机器学习算法预测小型光伏系统的发电量

Adam Idźkowski, Mateusz Sumorek
{"title":"使用机器学习算法预测小型光伏系统的发电量","authors":"Adam Idźkowski, Mateusz Sumorek","doi":"10.14313/par_252/37","DOIUrl":null,"url":null,"abstract":"The article presents data analysis for predicting energy production in photovoltaic (PV) power plant systems. The purpose of long-term forecasts is to determine the effectiveness of preventive actions and manage the power system effectively. Climate variables affecting the production of electricity in photovoltaic systems were analyzed. Forecasting methods using machine learning techniques such as Multi-Layer Perceptron (MLP) neural networks and Support Vector Machine (SVM) were compared. In addition, metrics were selected to determine the quality of forecasts. Determining the quality of forecasts was based on the actual varying conditions, not on the weather forecast data. The way of data preparation to create forecasting models were presented and the models with the best metrics were selected. For this purpose, the Scikit-learn library was used to create scripts in Python. The best results were obtained for regression models: MLPRegressor, CatBoostRegressor and Support Vector Regression. Actual measurement data from a system of optimally-positioned panels with a power of 3.0 kWp were used. For the MLPRegressor model, the highest coefficient of determination 0.605 was achieved with the smallest root-mean-square error of 1.79 KWh.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Machine Learning Algorithms to Forecast Energy Production in a Small PV System\",\"authors\":\"Adam Idźkowski, Mateusz Sumorek\",\"doi\":\"10.14313/par_252/37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents data analysis for predicting energy production in photovoltaic (PV) power plant systems. The purpose of long-term forecasts is to determine the effectiveness of preventive actions and manage the power system effectively. Climate variables affecting the production of electricity in photovoltaic systems were analyzed. Forecasting methods using machine learning techniques such as Multi-Layer Perceptron (MLP) neural networks and Support Vector Machine (SVM) were compared. In addition, metrics were selected to determine the quality of forecasts. Determining the quality of forecasts was based on the actual varying conditions, not on the weather forecast data. The way of data preparation to create forecasting models were presented and the models with the best metrics were selected. For this purpose, the Scikit-learn library was used to create scripts in Python. The best results were obtained for regression models: MLPRegressor, CatBoostRegressor and Support Vector Regression. Actual measurement data from a system of optimally-positioned panels with a power of 3.0 kWp were used. For the MLPRegressor model, the highest coefficient of determination 0.605 was achieved with the smallest root-mean-square error of 1.79 KWh.\",\"PeriodicalId\":383231,\"journal\":{\"name\":\"Pomiary Automatyka Robotyka\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pomiary Automatyka Robotyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/par_252/37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pomiary Automatyka Robotyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/par_252/37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文章介绍了预测光伏(PV)电站系统能源生产的数据分析。长期预测的目的是确定预防措施的有效性,并对电力系统进行有效管理。对影响光伏发电系统发电量的气候变量进行了分析。比较了使用多层感知器(MLP)神经网络和支持向量机(SVM)等机器学习技术的预测方法。此外,还选择了一些指标来确定预测的质量。确定预报质量的依据是实际变化情况,而不是天气预报数据。介绍了创建预报模型的数据准备方法,并选出了指标最佳的模型。为此,使用 Scikit-learn 库在 Python 中创建脚本。回归模型获得了最佳结果:MLPRegressor、CatBoostRegressor 和支持向量回归。实际测量数据来自一个功率为 3.0 kWp 的优化定位电池板系统。MLPRegressor 模型的确定系数最高,为 0.605,均方根误差最小,为 1.79 千瓦时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of Machine Learning Algorithms to Forecast Energy Production in a Small PV System
The article presents data analysis for predicting energy production in photovoltaic (PV) power plant systems. The purpose of long-term forecasts is to determine the effectiveness of preventive actions and manage the power system effectively. Climate variables affecting the production of electricity in photovoltaic systems were analyzed. Forecasting methods using machine learning techniques such as Multi-Layer Perceptron (MLP) neural networks and Support Vector Machine (SVM) were compared. In addition, metrics were selected to determine the quality of forecasts. Determining the quality of forecasts was based on the actual varying conditions, not on the weather forecast data. The way of data preparation to create forecasting models were presented and the models with the best metrics were selected. For this purpose, the Scikit-learn library was used to create scripts in Python. The best results were obtained for regression models: MLPRegressor, CatBoostRegressor and Support Vector Regression. Actual measurement data from a system of optimally-positioned panels with a power of 3.0 kWp were used. For the MLPRegressor model, the highest coefficient of determination 0.605 was achieved with the smallest root-mean-square error of 1.79 KWh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of Selected Calibration Methods for a Thermal Imaging Camera with a Cooled Detector Operating in the MWIR Range A Method of Measurement of Minimum Resolvable Temperature Difference as a Function of Magnification and Defocusing of a Thermal Camera Study on the Influence of an UGV Suspension System on Camera Motion of the Teleoperation System Tuning the Heading Controller for the Ship’s Autopilot Generation of Spatial Terrain Using the Hermes Editor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1