{"title":"真空紫外线范围内空心阴极强度分布的经验分析","authors":"S. C. Olsen, D. D. Allred, R. R. Vanfleet","doi":"10.1116/6.0003633","DOIUrl":null,"url":null,"abstract":"Hollow cathodes are a common type of vacuum ultraviolet (VUV) light source with a wide range of design and application. We determined the VUV (58.4 nm) intensity distribution of a hollow cathode as a function of current and pressure. Our model describes the intensity distribution of a McPherson 629-like hollow cathode helium plasma within the range of 0.50–1.00 A and 0.50–1.00 Torr as a ring with a center peak. We found that for all pressures and currents considered, the ring emits more VUV light than the center peak. We also found that the center peak has a minimum VUV light emission near 0.9 Torr.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"50 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical analysis of a hollow cathode’s intensity distribution in the vacuum ultraviolet range\",\"authors\":\"S. C. Olsen, D. D. Allred, R. R. Vanfleet\",\"doi\":\"10.1116/6.0003633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hollow cathodes are a common type of vacuum ultraviolet (VUV) light source with a wide range of design and application. We determined the VUV (58.4 nm) intensity distribution of a hollow cathode as a function of current and pressure. Our model describes the intensity distribution of a McPherson 629-like hollow cathode helium plasma within the range of 0.50–1.00 A and 0.50–1.00 Torr as a ring with a center peak. We found that for all pressures and currents considered, the ring emits more VUV light than the center peak. We also found that the center peak has a minimum VUV light emission near 0.9 Torr.\",\"PeriodicalId\":170900,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":\"50 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Empirical analysis of a hollow cathode’s intensity distribution in the vacuum ultraviolet range
Hollow cathodes are a common type of vacuum ultraviolet (VUV) light source with a wide range of design and application. We determined the VUV (58.4 nm) intensity distribution of a hollow cathode as a function of current and pressure. Our model describes the intensity distribution of a McPherson 629-like hollow cathode helium plasma within the range of 0.50–1.00 A and 0.50–1.00 Torr as a ring with a center peak. We found that for all pressures and currents considered, the ring emits more VUV light than the center peak. We also found that the center peak has a minimum VUV light emission near 0.9 Torr.