用于电催化硝酸盐还原成氨的硼调控铁单原子结构

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-13 DOI:10.1021/acsanm.4c02221
Xihui Lu, Jinshan Wei*, Hexing Lin, Yi Li and Ya-yun Li*, 
{"title":"用于电催化硝酸盐还原成氨的硼调控铁单原子结构","authors":"Xihui Lu,&nbsp;Jinshan Wei*,&nbsp;Hexing Lin,&nbsp;Yi Li and Ya-yun Li*,&nbsp;","doi":"10.1021/acsanm.4c02221","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalytic reduction of nitrate (NO<sub>3</sub>RR) to ammonia offers a promising approach for mitigating the environmental impact of NO<sub>3</sub><sup>–</sup>, while simultaneously enabling the synthesis of NH<sub>3</sub> under ambient conditions. Recently, single-atom catalysts (SACs) have been proven to have attractive activity on NO<sub>3</sub>RR, and better catalysts with enhanced activity and stability are still in demand. Here, we report the efficient boosting of NH<sub>3</sub> production via the NO<sub>3</sub>RR using boron-doped Fe SAC (Fe-BCN). Fe-BCN is a normal 12-hedral nanoparticle with a size of 500 nm. The NH<sub>3</sub> Faradaic efficiency of Fe-BCN reached 97.48%, with a high ammonia production rate of 2.17 mg cm<sup>–2</sup> h<sup>–1</sup>, in an alkaline electrolyte environment at an electrode potential of −0.3 V vs reversible hydrogen electrode. Density functional theory calculations revealed the strategy of introduced B regulating the intermediate adsorption on Fe-BCN, which enhanced the NO<sub>3</sub>RR activity. Furthermore, leveraging the high NO<sub>3</sub>RR activity of Fe-BCN, a nitrate-zinc battery with a power density of 0.90 mW cm<sup>–2</sup> was constructed by using Fe-BCN as the cathode and zinc as the anode, respectively. This research demonstrates the broad prospects of Fe-BCN in the NO<sub>3</sub>RR and provides insights for high-performance Fe SAC electrode materials.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron Regulated Fe Single-Atom Structures for Electrocatalytic Nitrate Reduction to Ammonia\",\"authors\":\"Xihui Lu,&nbsp;Jinshan Wei*,&nbsp;Hexing Lin,&nbsp;Yi Li and Ya-yun Li*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c02221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrocatalytic reduction of nitrate (NO<sub>3</sub>RR) to ammonia offers a promising approach for mitigating the environmental impact of NO<sub>3</sub><sup>–</sup>, while simultaneously enabling the synthesis of NH<sub>3</sub> under ambient conditions. Recently, single-atom catalysts (SACs) have been proven to have attractive activity on NO<sub>3</sub>RR, and better catalysts with enhanced activity and stability are still in demand. Here, we report the efficient boosting of NH<sub>3</sub> production via the NO<sub>3</sub>RR using boron-doped Fe SAC (Fe-BCN). Fe-BCN is a normal 12-hedral nanoparticle with a size of 500 nm. The NH<sub>3</sub> Faradaic efficiency of Fe-BCN reached 97.48%, with a high ammonia production rate of 2.17 mg cm<sup>–2</sup> h<sup>–1</sup>, in an alkaline electrolyte environment at an electrode potential of −0.3 V vs reversible hydrogen electrode. Density functional theory calculations revealed the strategy of introduced B regulating the intermediate adsorption on Fe-BCN, which enhanced the NO<sub>3</sub>RR activity. Furthermore, leveraging the high NO<sub>3</sub>RR activity of Fe-BCN, a nitrate-zinc battery with a power density of 0.90 mW cm<sup>–2</sup> was constructed by using Fe-BCN as the cathode and zinc as the anode, respectively. This research demonstrates the broad prospects of Fe-BCN in the NO<sub>3</sub>RR and provides insights for high-performance Fe SAC electrode materials.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c02221\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c02221","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过电催化将硝酸盐(NO3RR)还原为氨为减轻 NO3- 对环境的影响提供了一种可行的方法,同时还能在环境条件下合成 NH3。最近,单原子催化剂(SAC)已被证明在 NO3RR 上具有诱人的活性,但人们仍然需要具有更高活性和稳定性的催化剂。在此,我们报告了使用掺硼铁 SAC(Fe-BCN)通过 NO3RR 高效促进 NH3 生产的情况。Fe-BCN 是一种尺寸为 500 nm 的普通 12面体纳米粒子。在碱性电解质环境中,Fe-BCN 的 NH3 Faradaic 效率达到 97.48%,氨生产率高达 2.17 mg cm-2 h-1,电极电位为 -0.3 V,电极为可逆氢电极。密度泛函理论计算揭示了引入 B 调节 Fe-BCN 上中间体吸附的策略,从而提高了 NO3RR 的活性。此外,利用铁-碳化硼的高 NO3RR 活性,以铁-碳化硼为阴极,锌为阳极,构建了功率密度为 0.90 mW cm-2 的硝酸锌电池。这项研究证明了 Fe-BCN 在 NO3RR 中的广阔前景,并为高性能的 Fe SAC 电极材料提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boron Regulated Fe Single-Atom Structures for Electrocatalytic Nitrate Reduction to Ammonia

Electrocatalytic reduction of nitrate (NO3RR) to ammonia offers a promising approach for mitigating the environmental impact of NO3, while simultaneously enabling the synthesis of NH3 under ambient conditions. Recently, single-atom catalysts (SACs) have been proven to have attractive activity on NO3RR, and better catalysts with enhanced activity and stability are still in demand. Here, we report the efficient boosting of NH3 production via the NO3RR using boron-doped Fe SAC (Fe-BCN). Fe-BCN is a normal 12-hedral nanoparticle with a size of 500 nm. The NH3 Faradaic efficiency of Fe-BCN reached 97.48%, with a high ammonia production rate of 2.17 mg cm–2 h–1, in an alkaline electrolyte environment at an electrode potential of −0.3 V vs reversible hydrogen electrode. Density functional theory calculations revealed the strategy of introduced B regulating the intermediate adsorption on Fe-BCN, which enhanced the NO3RR activity. Furthermore, leveraging the high NO3RR activity of Fe-BCN, a nitrate-zinc battery with a power density of 0.90 mW cm–2 was constructed by using Fe-BCN as the cathode and zinc as the anode, respectively. This research demonstrates the broad prospects of Fe-BCN in the NO3RR and provides insights for high-performance Fe SAC electrode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Nitrogen-Doped Porous Carbon with Staged Nanopore Formation for Capacitors Nickel-Embedded Carbon Nanostructures as Noble Metal-Free Catalysts for the Hydrogen Evolution Reaction High-Performance Ammonia Gas Sensor Based on a Catalytic Ruthenium- Gated Field-Effect Transistor Strong Metal–Support Interactions in Cu(I)-Dark TiO2 Nanoscale Photocatalysts Prepared by Pulsed Laser Ablation for Hydrogen Evolution Reaction Quantum Dots as an Active Reservoir for Longer Effective Lifetimes in GaAs Bulk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1