Peiyi Peng, Yiming Zhang, Jie Chen, Xunchang J. Zhang, Xiuzhen Li, Di Xu
{"title":"衰减夏季不同厄尔尼诺事件对中国东部夏季降水海洋源的影响:稳定同位素的视角","authors":"Peiyi Peng, Yiming Zhang, Jie Chen, Xunchang J. Zhang, Xiuzhen Li, Di Xu","doi":"10.2166/wcc.2024.062","DOIUrl":null,"url":null,"abstract":"\n \n Extreme precipitation in eastern China (EC) is closely related to the diversity of the decaying phases of El Niño (warm-pool El Niño, i.e., WP El Niño and cold-tongue El Niño, i.e., CT El Niño), but little attention is paid to how the El Niño event variability influences precipitation sources for EC from an isotopic perspective. Stable isotopes are ideal physical tracers that can distinguish different sources of precipitation and quantify their relative contributions to precipitation. Accordingly, this study investigates spatiotemporal variations of water vapor flux and oceanic fraction to precipitation during different ENSO events by an isotopic mixing model. The results show that spatiotemporal patterns of moisture divergence for the decaying phase of WP El Niño are different from that of CT El Niño. The oceanic fraction anomalies present similar spatiotemporal trends with advection fraction anomalies. The spatiotemporal variations of precipitation source anomalies for different El Niño events are closely related to atmospheric circulations, i.e., the intensity and location of the western Pacific subtropical high (WPSH). These findings provide isotopic insights into the precipitation sources by El Niño events in EC. Future studies may further focus on the mechanisms producing extreme precipitation between the two kinds of El Niño.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of different El Niño events in the decaying summer on the oceanic source of summer rainfall for eastern China: A perspective from stable isotope\",\"authors\":\"Peiyi Peng, Yiming Zhang, Jie Chen, Xunchang J. Zhang, Xiuzhen Li, Di Xu\",\"doi\":\"10.2166/wcc.2024.062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Extreme precipitation in eastern China (EC) is closely related to the diversity of the decaying phases of El Niño (warm-pool El Niño, i.e., WP El Niño and cold-tongue El Niño, i.e., CT El Niño), but little attention is paid to how the El Niño event variability influences precipitation sources for EC from an isotopic perspective. Stable isotopes are ideal physical tracers that can distinguish different sources of precipitation and quantify their relative contributions to precipitation. Accordingly, this study investigates spatiotemporal variations of water vapor flux and oceanic fraction to precipitation during different ENSO events by an isotopic mixing model. The results show that spatiotemporal patterns of moisture divergence for the decaying phase of WP El Niño are different from that of CT El Niño. The oceanic fraction anomalies present similar spatiotemporal trends with advection fraction anomalies. The spatiotemporal variations of precipitation source anomalies for different El Niño events are closely related to atmospheric circulations, i.e., the intensity and location of the western Pacific subtropical high (WPSH). These findings provide isotopic insights into the precipitation sources by El Niño events in EC. Future studies may further focus on the mechanisms producing extreme precipitation between the two kinds of El Niño.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2024.062\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.062","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Impacts of different El Niño events in the decaying summer on the oceanic source of summer rainfall for eastern China: A perspective from stable isotope
Extreme precipitation in eastern China (EC) is closely related to the diversity of the decaying phases of El Niño (warm-pool El Niño, i.e., WP El Niño and cold-tongue El Niño, i.e., CT El Niño), but little attention is paid to how the El Niño event variability influences precipitation sources for EC from an isotopic perspective. Stable isotopes are ideal physical tracers that can distinguish different sources of precipitation and quantify their relative contributions to precipitation. Accordingly, this study investigates spatiotemporal variations of water vapor flux and oceanic fraction to precipitation during different ENSO events by an isotopic mixing model. The results show that spatiotemporal patterns of moisture divergence for the decaying phase of WP El Niño are different from that of CT El Niño. The oceanic fraction anomalies present similar spatiotemporal trends with advection fraction anomalies. The spatiotemporal variations of precipitation source anomalies for different El Niño events are closely related to atmospheric circulations, i.e., the intensity and location of the western Pacific subtropical high (WPSH). These findings provide isotopic insights into the precipitation sources by El Niño events in EC. Future studies may further focus on the mechanisms producing extreme precipitation between the two kinds of El Niño.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.