{"title":"增强轻量级自动调制分类模型对抗鲁棒性的知识提炼策略","authors":"Fanghao Xu, Chao Wang, Jiakai Liang, Chenyang Zuo, Keqiang Yue, Wenjun Li","doi":"10.1049/cmu2.12793","DOIUrl":null,"url":null,"abstract":"<p>Automatic modulation classification models based on deep learning models are at risk of being interfered by adversarial attacks. In an adversarial attack, the attacker causes the classification model to misclassify the received signal by adding carefully crafted adversarial interference to the transmitted signal. Based on the requirements of efficient computing and edge deployment, a lightweight automatic modulation classification model is proposed. Considering that the lightweight automatic modulation classification model is more susceptible to interference from adversarial attacks and that adversarial training of the lightweight auto-modulation classification model fails to achieve the desired results, an adversarial attack defense system for the lightweight automatic modulation classification model is further proposed, which can enhance the robustness when subjected to adversarial attacks. The defense method aims to transfer the adversarial robustness from a trained large automatic modulation classification model to a lightweight model through the technique of adversarial robust distillation. The proposed method exhibits better adversarial robustness than current defense techniques in feature fusion based automatic modulation classification models in white box attack scenarios.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 14","pages":"827-845"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12793","citationCount":"0","resultStr":"{\"title\":\"A knowledge distillation strategy for enhancing the adversarial robustness of lightweight automatic modulation classification models\",\"authors\":\"Fanghao Xu, Chao Wang, Jiakai Liang, Chenyang Zuo, Keqiang Yue, Wenjun Li\",\"doi\":\"10.1049/cmu2.12793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Automatic modulation classification models based on deep learning models are at risk of being interfered by adversarial attacks. In an adversarial attack, the attacker causes the classification model to misclassify the received signal by adding carefully crafted adversarial interference to the transmitted signal. Based on the requirements of efficient computing and edge deployment, a lightweight automatic modulation classification model is proposed. Considering that the lightweight automatic modulation classification model is more susceptible to interference from adversarial attacks and that adversarial training of the lightweight auto-modulation classification model fails to achieve the desired results, an adversarial attack defense system for the lightweight automatic modulation classification model is further proposed, which can enhance the robustness when subjected to adversarial attacks. The defense method aims to transfer the adversarial robustness from a trained large automatic modulation classification model to a lightweight model through the technique of adversarial robust distillation. The proposed method exhibits better adversarial robustness than current defense techniques in feature fusion based automatic modulation classification models in white box attack scenarios.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"18 14\",\"pages\":\"827-845\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12793\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12793\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12793","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A knowledge distillation strategy for enhancing the adversarial robustness of lightweight automatic modulation classification models
Automatic modulation classification models based on deep learning models are at risk of being interfered by adversarial attacks. In an adversarial attack, the attacker causes the classification model to misclassify the received signal by adding carefully crafted adversarial interference to the transmitted signal. Based on the requirements of efficient computing and edge deployment, a lightweight automatic modulation classification model is proposed. Considering that the lightweight automatic modulation classification model is more susceptible to interference from adversarial attacks and that adversarial training of the lightweight auto-modulation classification model fails to achieve the desired results, an adversarial attack defense system for the lightweight automatic modulation classification model is further proposed, which can enhance the robustness when subjected to adversarial attacks. The defense method aims to transfer the adversarial robustness from a trained large automatic modulation classification model to a lightweight model through the technique of adversarial robust distillation. The proposed method exhibits better adversarial robustness than current defense techniques in feature fusion based automatic modulation classification models in white box attack scenarios.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf