通过极坐标变换和渐进式离群点去除,使用陆地激光雷达点估算 DBH 的可靠方法

IF 2.4 2区 农林科学 Q1 FORESTRY Forests Pub Date : 2024-06-13 DOI:10.3390/f15061031
Z. Hui, Lei Lin, Shuanggen Jin, Yuanping Xia, Yao Yevenyo Ziggah
{"title":"通过极坐标变换和渐进式离群点去除,使用陆地激光雷达点估算 DBH 的可靠方法","authors":"Z. Hui, Lei Lin, Shuanggen Jin, Yuanping Xia, Yao Yevenyo Ziggah","doi":"10.3390/f15061031","DOIUrl":null,"url":null,"abstract":"Diameter at breast height (DBH) is a crucial parameter for forest inventory. However, accurately estimating DBH remains challenging due to the noisy and incomplete cross-sectional points. To address this, this paper proposed a reliable DBH estimation method using terrestrial LiDAR points through polar coordinate transformation and progressive outlier removal. In this paper, the initial center was initially detected by rasterizing the convex hull, and then the Cartesian coordinates were transformed into polar coordinates. In the polar coordinate system, the outliers were classified as low and high outliers according to the distribution of polar radius difference. Both types of outliers were then removed using adaptive thresholds and the moving least squares algorithm. Finally, DBH was estimated by calculating the definite integral of arc length in the polar coordinate system. Twenty publicly available individual trees were adopted for the test. Experimental results indicated that the proposed method performs better than the other four classical DBH estimation methods. Furthermore, several extreme cases scanned using terrestrial LiDAR in practice, such as cross-sectional points with lots of outliers or larger data gaps, were also tested. Experimental results demonstrate that the proposed method accurately calculates DBH even in these challenging cases.","PeriodicalId":12339,"journal":{"name":"Forests","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reliable DBH Estimation Method Using Terrestrial LiDAR Points through Polar Coordinate Transformation and Progressive Outlier Removal\",\"authors\":\"Z. Hui, Lei Lin, Shuanggen Jin, Yuanping Xia, Yao Yevenyo Ziggah\",\"doi\":\"10.3390/f15061031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diameter at breast height (DBH) is a crucial parameter for forest inventory. However, accurately estimating DBH remains challenging due to the noisy and incomplete cross-sectional points. To address this, this paper proposed a reliable DBH estimation method using terrestrial LiDAR points through polar coordinate transformation and progressive outlier removal. In this paper, the initial center was initially detected by rasterizing the convex hull, and then the Cartesian coordinates were transformed into polar coordinates. In the polar coordinate system, the outliers were classified as low and high outliers according to the distribution of polar radius difference. Both types of outliers were then removed using adaptive thresholds and the moving least squares algorithm. Finally, DBH was estimated by calculating the definite integral of arc length in the polar coordinate system. Twenty publicly available individual trees were adopted for the test. Experimental results indicated that the proposed method performs better than the other four classical DBH estimation methods. Furthermore, several extreme cases scanned using terrestrial LiDAR in practice, such as cross-sectional points with lots of outliers or larger data gaps, were also tested. Experimental results demonstrate that the proposed method accurately calculates DBH even in these challenging cases.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f15061031\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15061031","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

胸径(DBH)是森林资源清查的一个重要参数。然而,由于横截面点的噪声和不完整性,准确估算 DBH 仍然具有挑战性。针对这一问题,本文提出了一种可靠的 DBH 估算方法,通过极坐标变换和渐进式离群点去除,利用地面激光雷达点进行估算。本文首先通过栅格化凸壳检测初始中心,然后将直角坐标转换为极坐标。在极坐标系中,根据极半径差的分布将离群值分为低离群值和高离群值。然后使用自适应阈值和移动最小二乘法算法去除这两类离群值。最后,通过计算极坐标系中弧长的定积分来估算 DBH。测试采用了 20 棵可公开获取的个体树木。实验结果表明,所提出的方法比其他四种经典的 DBH 估算方法性能更好。此外,还测试了在实践中使用陆地激光雷达扫描的几种极端情况,如具有大量异常值或较大数据缺口的断面点。实验结果表明,即使在这些具有挑战性的情况下,所提出的方法也能准确计算出 DBH。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Reliable DBH Estimation Method Using Terrestrial LiDAR Points through Polar Coordinate Transformation and Progressive Outlier Removal
Diameter at breast height (DBH) is a crucial parameter for forest inventory. However, accurately estimating DBH remains challenging due to the noisy and incomplete cross-sectional points. To address this, this paper proposed a reliable DBH estimation method using terrestrial LiDAR points through polar coordinate transformation and progressive outlier removal. In this paper, the initial center was initially detected by rasterizing the convex hull, and then the Cartesian coordinates were transformed into polar coordinates. In the polar coordinate system, the outliers were classified as low and high outliers according to the distribution of polar radius difference. Both types of outliers were then removed using adaptive thresholds and the moving least squares algorithm. Finally, DBH was estimated by calculating the definite integral of arc length in the polar coordinate system. Twenty publicly available individual trees were adopted for the test. Experimental results indicated that the proposed method performs better than the other four classical DBH estimation methods. Furthermore, several extreme cases scanned using terrestrial LiDAR in practice, such as cross-sectional points with lots of outliers or larger data gaps, were also tested. Experimental results demonstrate that the proposed method accurately calculates DBH even in these challenging cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forests
Forests FORESTRY-
CiteScore
4.40
自引率
17.20%
发文量
1823
审稿时长
19.02 days
期刊介绍: Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
The Impact of the Governance Fragmentation of Forestry Communities on the Economic Performance of State-Owned Forest Enterprises in Northeast China: An Empirical Analysis Based on the Transaction Cost Perspective Soybean Meal–Oxidized Lignin as Bio-Hybridized Wood Panel Adhesives with Increased Water Resistance The Added Value of Urban Trees (Tilia tomentosa Moench, Fraxinus excelsior L. and Pinus nigra J.F. Arnold) in Terms of Air Pollutant Removal Predicting the Potential Distribution of Quercus oxyphylla in China under Climate Change Scenarios Topographic Variation in Ecosystem Multifunctionality in an Old-Growth Subtropical Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1