用于医疗应用的冷大气等离子体的非临床安全性评估:遗传毒性和突变性研究的作用

Life Pub Date : 2024-06-13 DOI:10.3390/life14060759
Piimwara Yarangsee, Supakit Khacha-ananda, Pornsiri Pitchakarn, Unchisa Intayoung, Sirikhwan Sriuan, Jirarat Karinchai, Apiwat Wijaikhum, Dhreerawan Boonyawan
{"title":"用于医疗应用的冷大气等离子体的非临床安全性评估:遗传毒性和突变性研究的作用","authors":"Piimwara Yarangsee, Supakit Khacha-ananda, Pornsiri Pitchakarn, Unchisa Intayoung, Sirikhwan Sriuan, Jirarat Karinchai, Apiwat Wijaikhum, Dhreerawan Boonyawan","doi":"10.3390/life14060759","DOIUrl":null,"url":null,"abstract":"Atmospheric nonthermal plasma (ANTP) has rapidly evolved as an innovative tool in biomedicine with various applications, especially in treating skin diseases. In particular, the formation of reactive oxygen species (ROS) and nitrogen species (RNS), which are generated by ANTP, plays an important role in the biological signaling pathways of human cells. Unfortunately, excessive amounts of these reactive species significantly result in cellular damage and cell death induction. To ensure the safe application of ANTP, preclinical in vitro studies must be conducted before proceeding to in vivo or clinical trials involving humans. Our study aimed to investigate adverse effects on genetic substances in murine fibroblast cells exposed to ANTP. Cell viability and proliferation were markedly reduced after exposing the cells with plasma. Both extracellular and intracellular reactive species, especially RNS, were significantly increased upon plasma exposure in the culture medium and the cells. Notably, significant DNA damage in the cells was observed in the cells exposed to plasma. However, plasma was not classified as a mutagen in the Ames test. This suggested that plasma led to the generation of both extracellular and intracellular reactive species, particularly nitrogen species, which affect cell proliferation and are also known to induce genetic damage in fibroblast cells. These results highlight the genotoxic and mutagenic effects of ANTP, emphasizing the need for the cautious selection of plasma intensity in specific applications to avoid adverse side effects resulting from reactive species production.","PeriodicalId":18182,"journal":{"name":"Life","volume":"53 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nonclinical Safety Evaluation of Cold Atmospheric Plasma for Medical Applications: The Role of Genotoxicity and Mutagenicity Studies\",\"authors\":\"Piimwara Yarangsee, Supakit Khacha-ananda, Pornsiri Pitchakarn, Unchisa Intayoung, Sirikhwan Sriuan, Jirarat Karinchai, Apiwat Wijaikhum, Dhreerawan Boonyawan\",\"doi\":\"10.3390/life14060759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric nonthermal plasma (ANTP) has rapidly evolved as an innovative tool in biomedicine with various applications, especially in treating skin diseases. In particular, the formation of reactive oxygen species (ROS) and nitrogen species (RNS), which are generated by ANTP, plays an important role in the biological signaling pathways of human cells. Unfortunately, excessive amounts of these reactive species significantly result in cellular damage and cell death induction. To ensure the safe application of ANTP, preclinical in vitro studies must be conducted before proceeding to in vivo or clinical trials involving humans. Our study aimed to investigate adverse effects on genetic substances in murine fibroblast cells exposed to ANTP. Cell viability and proliferation were markedly reduced after exposing the cells with plasma. Both extracellular and intracellular reactive species, especially RNS, were significantly increased upon plasma exposure in the culture medium and the cells. Notably, significant DNA damage in the cells was observed in the cells exposed to plasma. However, plasma was not classified as a mutagen in the Ames test. This suggested that plasma led to the generation of both extracellular and intracellular reactive species, particularly nitrogen species, which affect cell proliferation and are also known to induce genetic damage in fibroblast cells. These results highlight the genotoxic and mutagenic effects of ANTP, emphasizing the need for the cautious selection of plasma intensity in specific applications to avoid adverse side effects resulting from reactive species production.\",\"PeriodicalId\":18182,\"journal\":{\"name\":\"Life\",\"volume\":\"53 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/life14060759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/life14060759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大气非热等离子体(ANTP)已迅速发展成为生物医学中的一种创新工具,具有多种应用,尤其是在治疗皮肤病方面。其中,ANTP 产生的活性氧(ROS)和活性氮(RNS)在人体细胞的生物信号通路中发挥着重要作用。遗憾的是,过量的这些活性物种会严重导致细胞损伤和诱导细胞死亡。为确保 ANTP 的安全应用,在进行涉及人体的体内或临床试验之前,必须进行临床前体外研究。我们的研究旨在调查暴露于 ANTP 的小鼠成纤维细胞对遗传物质的不良影响。细胞与血浆接触后,其活力和增殖明显降低。培养基和细胞中的细胞外和细胞内活性物质,尤其是 RNS,在接触血浆后都显著增加。值得注意的是,暴露于血浆的细胞中出现了严重的 DNA 损伤。然而,在艾姆斯试验中,血浆并未被归类为诱变剂。这表明血浆会导致细胞外和细胞内活性物质的产生,特别是氮物质,这些物质会影响细胞增殖,而且已知会诱发成纤维细胞的遗传损伤。这些结果突显了 ANTP 的遗传毒性和致突变效应,强调了在具体应用中谨慎选择血浆强度的必要性,以避免活性物种产生的不良副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Nonclinical Safety Evaluation of Cold Atmospheric Plasma for Medical Applications: The Role of Genotoxicity and Mutagenicity Studies
Atmospheric nonthermal plasma (ANTP) has rapidly evolved as an innovative tool in biomedicine with various applications, especially in treating skin diseases. In particular, the formation of reactive oxygen species (ROS) and nitrogen species (RNS), which are generated by ANTP, plays an important role in the biological signaling pathways of human cells. Unfortunately, excessive amounts of these reactive species significantly result in cellular damage and cell death induction. To ensure the safe application of ANTP, preclinical in vitro studies must be conducted before proceeding to in vivo or clinical trials involving humans. Our study aimed to investigate adverse effects on genetic substances in murine fibroblast cells exposed to ANTP. Cell viability and proliferation were markedly reduced after exposing the cells with plasma. Both extracellular and intracellular reactive species, especially RNS, were significantly increased upon plasma exposure in the culture medium and the cells. Notably, significant DNA damage in the cells was observed in the cells exposed to plasma. However, plasma was not classified as a mutagen in the Ames test. This suggested that plasma led to the generation of both extracellular and intracellular reactive species, particularly nitrogen species, which affect cell proliferation and are also known to induce genetic damage in fibroblast cells. These results highlight the genotoxic and mutagenic effects of ANTP, emphasizing the need for the cautious selection of plasma intensity in specific applications to avoid adverse side effects resulting from reactive species production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Personalized Management of Patients with Proliferative Diabetic Vitreoretinopathy Congenital Pulmonary Airway Malformation in Preterm Infants: A Case Report and Review of the Literature Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment Effect of FluoRoquinolones on Aortic Growth, aortic stIffness and wave refLEctionS (FRAGILES study) Leveraging Electronic Health Records to Predict the Risk of Acute Kidney Injury after Allogeneic Hematopoietic Cell Transplantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1