Mengmeng Xu, M. Hu, Zerong Li, Jinxiu Wang, Jiaxin Fu, Shaokun Wang, Yingying Ji, Haozhen Li, M. Bi, Xuefang Zhou, Sunqiang Pan, Chong Liu
{"title":"全固态自模式锁定突发脉冲激光器的时频和频谱分析","authors":"Mengmeng Xu, M. Hu, Zerong Li, Jinxiu Wang, Jiaxin Fu, Shaokun Wang, Yingying Ji, Haozhen Li, M. Bi, Xuefang Zhou, Sunqiang Pan, Chong Liu","doi":"10.3390/photonics11060558","DOIUrl":null,"url":null,"abstract":"The theoretical and experimental characteristics of all-solid-state self-mode-locked burst pulse lasers are investigated in this study. The time–frequency and spectrum analyses of the lasers incorporating Fabry–Pérot (F-P) structures are presented, along with the development of the corresponding theoretical model. Self-mode-locked burst pulse lasers are experimentally constructed to reduce intracavity losses using the front and rear end surfaces of the gain media to form F-P structures. When the laser cavity length is 600 mm and the gain media lengths are 5, 6, and 10 mm, each burst pulse produced contains 56, 47, and 28 subpulses, respectively, with the same burst pulse width of 2 ns. The burst pulse train with beam quality M2 = 1.37 and an average output power of 0.23 W is obtained when the gain medium length is 5 mm and the pump power is 4.5 W. The corresponding burst pulse repetition frequency is 0.25 GHz and the subpulse repetition frequency is 13.66 GHz. The time–frequency spectral analyses of the laser signals provide a good representation of laser spectral information that even the currently available highest-resolution spectrometers cannot resolve.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time–Frequency and Spectrum Analyses of All-Solid-State Self-Mode-Locked Burst Pulse Lasers\",\"authors\":\"Mengmeng Xu, M. Hu, Zerong Li, Jinxiu Wang, Jiaxin Fu, Shaokun Wang, Yingying Ji, Haozhen Li, M. Bi, Xuefang Zhou, Sunqiang Pan, Chong Liu\",\"doi\":\"10.3390/photonics11060558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theoretical and experimental characteristics of all-solid-state self-mode-locked burst pulse lasers are investigated in this study. The time–frequency and spectrum analyses of the lasers incorporating Fabry–Pérot (F-P) structures are presented, along with the development of the corresponding theoretical model. Self-mode-locked burst pulse lasers are experimentally constructed to reduce intracavity losses using the front and rear end surfaces of the gain media to form F-P structures. When the laser cavity length is 600 mm and the gain media lengths are 5, 6, and 10 mm, each burst pulse produced contains 56, 47, and 28 subpulses, respectively, with the same burst pulse width of 2 ns. The burst pulse train with beam quality M2 = 1.37 and an average output power of 0.23 W is obtained when the gain medium length is 5 mm and the pump power is 4.5 W. The corresponding burst pulse repetition frequency is 0.25 GHz and the subpulse repetition frequency is 13.66 GHz. The time–frequency spectral analyses of the laser signals provide a good representation of laser spectral information that even the currently available highest-resolution spectrometers cannot resolve.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11060558\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11060558","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Time–Frequency and Spectrum Analyses of All-Solid-State Self-Mode-Locked Burst Pulse Lasers
The theoretical and experimental characteristics of all-solid-state self-mode-locked burst pulse lasers are investigated in this study. The time–frequency and spectrum analyses of the lasers incorporating Fabry–Pérot (F-P) structures are presented, along with the development of the corresponding theoretical model. Self-mode-locked burst pulse lasers are experimentally constructed to reduce intracavity losses using the front and rear end surfaces of the gain media to form F-P structures. When the laser cavity length is 600 mm and the gain media lengths are 5, 6, and 10 mm, each burst pulse produced contains 56, 47, and 28 subpulses, respectively, with the same burst pulse width of 2 ns. The burst pulse train with beam quality M2 = 1.37 and an average output power of 0.23 W is obtained when the gain medium length is 5 mm and the pump power is 4.5 W. The corresponding burst pulse repetition frequency is 0.25 GHz and the subpulse repetition frequency is 13.66 GHz. The time–frequency spectral analyses of the laser signals provide a good representation of laser spectral information that even the currently available highest-resolution spectrometers cannot resolve.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.