无机阴离子对紫外线/过硫酸盐高级氧化法光降解水中除草剂残留物的影响

Catalysts Pub Date : 2024-06-13 DOI:10.3390/catal14060376
G. Pérez-Lucas, Aitor Campillo, Simón Navarro
{"title":"无机阴离子对紫外线/过硫酸盐高级氧化法光降解水中除草剂残留物的影响","authors":"G. Pérez-Lucas, Aitor Campillo, Simón Navarro","doi":"10.3390/catal14060376","DOIUrl":null,"url":null,"abstract":"The removal of pesticides and other organic pollutants from water through advanced oxidation processes (AOPs) holds great promise. The main advantage of these technologies is that they remove, or at least reduce, pesticide levels by mineralization rather than transfer, as in conventional processes. This study first evaluated the effectiveness of UV/S2O8= compared to heterogeneous photocatalysis using UV/TiO2 processes on the degradation of two commonly used herbicides (terbuthylazine and isoproturon) in aqueous solutions using a laboratory photoreactor. In addition, the effect of the UV wavelength on the degradation efficiency of both herbicides was investigated. Although the degradation rate was greater under UV(254)/S2O8= nm than under UV(365)/S2O8= nm, complete degradation of the herbicides (0.2 mg L−1) was achieved within 30 min under UV-366 nm using a Na2S2O8 dose of 250 mg L−1 in the absence of inorganic anions. To assess the impact of the water matrix, the individual and combined effects of sulfate (SO4=), bicarbonate (HCO3−), and chloride (Cl−) were evaluated. These can react with hydroxyl (HO•) and sulfate (SO4•−) radicals generated during AOPs to form new radicals with a lower redox potential. The results showed negligible effects of SO4=, while the combination of HCO3− and Cl− seemed to be the key to the decrease in herbicide removal efficiency found when working with complex matrices. Finally, the main intermediates detected during the photodegradation process are identified, and the likely pathways involving dealkylation, dechlorination, and hydroxylation are proposed and discussed.","PeriodicalId":505577,"journal":{"name":"Catalysts","volume":"8 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Inorganic Anions on the Photodegradation of Herbicide Residues in Water by UV/Persulfate-Based Advanced Oxidation\",\"authors\":\"G. Pérez-Lucas, Aitor Campillo, Simón Navarro\",\"doi\":\"10.3390/catal14060376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The removal of pesticides and other organic pollutants from water through advanced oxidation processes (AOPs) holds great promise. The main advantage of these technologies is that they remove, or at least reduce, pesticide levels by mineralization rather than transfer, as in conventional processes. This study first evaluated the effectiveness of UV/S2O8= compared to heterogeneous photocatalysis using UV/TiO2 processes on the degradation of two commonly used herbicides (terbuthylazine and isoproturon) in aqueous solutions using a laboratory photoreactor. In addition, the effect of the UV wavelength on the degradation efficiency of both herbicides was investigated. Although the degradation rate was greater under UV(254)/S2O8= nm than under UV(365)/S2O8= nm, complete degradation of the herbicides (0.2 mg L−1) was achieved within 30 min under UV-366 nm using a Na2S2O8 dose of 250 mg L−1 in the absence of inorganic anions. To assess the impact of the water matrix, the individual and combined effects of sulfate (SO4=), bicarbonate (HCO3−), and chloride (Cl−) were evaluated. These can react with hydroxyl (HO•) and sulfate (SO4•−) radicals generated during AOPs to form new radicals with a lower redox potential. The results showed negligible effects of SO4=, while the combination of HCO3− and Cl− seemed to be the key to the decrease in herbicide removal efficiency found when working with complex matrices. Finally, the main intermediates detected during the photodegradation process are identified, and the likely pathways involving dealkylation, dechlorination, and hydroxylation are proposed and discussed.\",\"PeriodicalId\":505577,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14060376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/catal14060376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过高级氧化工艺(AOPs)去除水中的农药和其他有机污染物前景广阔。这些技术的主要优点是通过矿化作用而不是传统工艺中的转移作用去除或至少降低农药含量。本研究首先评估了紫外线/S2O8=与使用紫外线/二氧化钛的异相光催化过程相比,使用实验室光反应器降解水溶液中两种常用除草剂(特丁津和异丙隆)的效果。此外,还研究了紫外线波长对两种除草剂降解效率的影响。虽然紫外线(254)/S2O8= nm 波长下的降解率高于紫外线(365)/S2O8= nm 波长下的降解率,但在无机阴离子存在的情况下,Na2S2O8 剂量为 250 mg L-1 时,紫外线-366 nm 波长下的除草剂(0.2 mg L-1)可在 30 分钟内完全降解。为了评估水基质的影响,评估了硫酸盐(SO4=)、碳酸氢盐(HCO3-)和氯化物(Cl-)的单独影响和综合影响。这些物质可与 AOP 过程中产生的羟基(HO-)和硫酸根(SO4--)发生反应,形成氧化还原电位较低的新自由基。结果表明,SO4= 的影响可以忽略不计,而 HCO3- 和 Cl- 的组合似乎是在处理复杂基质时除草剂去除效率降低的关键。最后,确定了光降解过程中检测到的主要中间产物,并提出和讨论了涉及脱烷基化、脱氯和羟基化的可能途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Inorganic Anions on the Photodegradation of Herbicide Residues in Water by UV/Persulfate-Based Advanced Oxidation
The removal of pesticides and other organic pollutants from water through advanced oxidation processes (AOPs) holds great promise. The main advantage of these technologies is that they remove, or at least reduce, pesticide levels by mineralization rather than transfer, as in conventional processes. This study first evaluated the effectiveness of UV/S2O8= compared to heterogeneous photocatalysis using UV/TiO2 processes on the degradation of two commonly used herbicides (terbuthylazine and isoproturon) in aqueous solutions using a laboratory photoreactor. In addition, the effect of the UV wavelength on the degradation efficiency of both herbicides was investigated. Although the degradation rate was greater under UV(254)/S2O8= nm than under UV(365)/S2O8= nm, complete degradation of the herbicides (0.2 mg L−1) was achieved within 30 min under UV-366 nm using a Na2S2O8 dose of 250 mg L−1 in the absence of inorganic anions. To assess the impact of the water matrix, the individual and combined effects of sulfate (SO4=), bicarbonate (HCO3−), and chloride (Cl−) were evaluated. These can react with hydroxyl (HO•) and sulfate (SO4•−) radicals generated during AOPs to form new radicals with a lower redox potential. The results showed negligible effects of SO4=, while the combination of HCO3− and Cl− seemed to be the key to the decrease in herbicide removal efficiency found when working with complex matrices. Finally, the main intermediates detected during the photodegradation process are identified, and the likely pathways involving dealkylation, dechlorination, and hydroxylation are proposed and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Facile Immersing Synthesis of Pt Single Atoms Supported on Sulfide for Bifunctional toward Seawater Electrolysis Construction of Cu2O-ZnO/Cellulose Composites for Enhancing the Photocatalytic Performance The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity BiVO4-Based Photocatalysts for the Degradation of Antibiotics in Wastewater: Calcination Role after Solvothermal Synthesis Green Synthesis of Copper Oxide Nanoparticles from Waste Solar Panels Using Piper nigrum Fruit Extract and Their Antibacterial Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1