低风速地区商用风力涡轮机性能评估

IF 1.5 Q4 ENERGY & FUELS Wind Engineering Pub Date : 2024-06-13 DOI:10.1177/0309524x241250057
Z. Tahir, Ammara Kanwal, Muhammad Zeeshan Jamil, Imran Amin, Muhammad Abdullah, U. Saeed, Tariq Ali
{"title":"低风速地区商用风力涡轮机性能评估","authors":"Z. Tahir, Ammara Kanwal, Muhammad Zeeshan Jamil, Imran Amin, Muhammad Abdullah, U. Saeed, Tariq Ali","doi":"10.1177/0309524x241250057","DOIUrl":null,"url":null,"abstract":"Wind resource assessment of 12 sites in low-wind regions of Pakistan was conducted, focusing on wind data characteristics and wind speed distributions. A comparative performance evaluation of Power Law (PL) and Logarithmic Law (LogL) for interpolation (at 60 m) and extrapolation (at 80 m) of wind speed was performed. Performance analysis of over 500 commercial wind turbines was carried out in terms of Net Capacity Factor (NCF). The wind power density of all sites at 50 m, ranges from 33 to 244 W/m2, categorizing wind power class as either poor or marginal. The performance evaluation shows that PL and LogL perform better for interpolation and extrapolation respectively, at the same height. A turbine with cut-in and rated speed of 1.0 and 10 m/s respectively, achieves maximum NCF across all sites due to lowest cut-in speed. The NCF of the turbine for marginal wind power class sites ranged from 53% to 58%.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance assessment of commercial wind turbines for low wind speed regions\",\"authors\":\"Z. Tahir, Ammara Kanwal, Muhammad Zeeshan Jamil, Imran Amin, Muhammad Abdullah, U. Saeed, Tariq Ali\",\"doi\":\"10.1177/0309524x241250057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind resource assessment of 12 sites in low-wind regions of Pakistan was conducted, focusing on wind data characteristics and wind speed distributions. A comparative performance evaluation of Power Law (PL) and Logarithmic Law (LogL) for interpolation (at 60 m) and extrapolation (at 80 m) of wind speed was performed. Performance analysis of over 500 commercial wind turbines was carried out in terms of Net Capacity Factor (NCF). The wind power density of all sites at 50 m, ranges from 33 to 244 W/m2, categorizing wind power class as either poor or marginal. The performance evaluation shows that PL and LogL perform better for interpolation and extrapolation respectively, at the same height. A turbine with cut-in and rated speed of 1.0 and 10 m/s respectively, achieves maximum NCF across all sites due to lowest cut-in speed. The NCF of the turbine for marginal wind power class sites ranged from 53% to 58%.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524x241250057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x241250057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

对巴基斯坦低风区的 12 个地点进行了风资源评估,重点是风数据特征和风速分布。对用于风速内插(60 米处)和外推(80 米处)的功率定律(PL)和对数定律(LogL)进行了性能比较评估。根据净容量系数 (NCF) 对 500 多台商用风力涡轮机进行了性能分析。所有地点 50 米处的风功率密度从 33 到 244 W/m2 不等,风力等级被划分为较差或边缘。性能评估结果表明,在同一高度,PL 和 LogL 分别在内插法和外推法中表现更佳。切入速度和额定速度分别为 1.0 米/秒和 10 米/秒的风机,由于切入速度最低,在所有地点都能达到最大 NCF。边际风力等级站点的风机 NCF 为 53% 至 58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance assessment of commercial wind turbines for low wind speed regions
Wind resource assessment of 12 sites in low-wind regions of Pakistan was conducted, focusing on wind data characteristics and wind speed distributions. A comparative performance evaluation of Power Law (PL) and Logarithmic Law (LogL) for interpolation (at 60 m) and extrapolation (at 80 m) of wind speed was performed. Performance analysis of over 500 commercial wind turbines was carried out in terms of Net Capacity Factor (NCF). The wind power density of all sites at 50 m, ranges from 33 to 244 W/m2, categorizing wind power class as either poor or marginal. The performance evaluation shows that PL and LogL perform better for interpolation and extrapolation respectively, at the same height. A turbine with cut-in and rated speed of 1.0 and 10 m/s respectively, achieves maximum NCF across all sites due to lowest cut-in speed. The NCF of the turbine for marginal wind power class sites ranged from 53% to 58%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind Engineering
Wind Engineering ENERGY & FUELS-
CiteScore
4.00
自引率
13.30%
发文量
81
期刊介绍: Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.
期刊最新文献
Optimizing efficiency and analyzing performance: Enhanced airfoil cross-sections for horizontal axis small wind turbines Numerical investigation of the structural-response analysis of a glass/epoxy composite blade for small-scale vertical-axis wind turbine Effective energy management strategy with a novel design of fuzzy logic and JAYA-based controllers in isolated DC/AC microgrids: A comparative analysis PSO-optimized sensor-less sliding mode control for variable speed wind turbine chains based on DPIG with neural-MRAS observer Wind power development: A historical review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1