基于流量阀-锥形橡胶结构的磁共振隔离器的结构设计与多目标优化

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED Modern Physics Letters B Pub Date : 2024-06-12 DOI:10.1142/s0217984924420107
Pufan Zhu, Mi Zhu, Zhiyuan Zheng, Luhang Jiang, J. Fu, Miao Yu
{"title":"基于流量阀-锥形橡胶结构的磁共振隔离器的结构设计与多目标优化","authors":"Pufan Zhu, Mi Zhu, Zhiyuan Zheng, Luhang Jiang, J. Fu, Miao Yu","doi":"10.1142/s0217984924420107","DOIUrl":null,"url":null,"abstract":"Due to the distinctive working environment of high precision machining and manufacturing field, it poses challenges in meeting the isolation requirements, including limited installation space, multi-dimensional vibration, and a wide range of vibration frequencies. To tackle these obstacles, this paper introduces a magnetorheological (MR) isolator that offers adjustable vertical damping characteristics while guaranteeing three-axis vibration isolation through an inclined cone structure. First, the structure of the isolator was designed by combining a flow valve damper with a conical rubber structure. Second, in pursuit of lightweight design and enhanced magnetic field strength, collaborative simulations using ANSYS and Maxwell are conducted to subject the critical components of the isolator to multi-objective optimization. The optimization results demonstrate that the mass of the isolator has been reduced by approximately 27.7%, while the magnetic field intensity has increased by around 20%. Finally, the performance of the MR isolator was verified through static testing and dynamic testing, respectively. The experimental results demonstrate that the isolator can generate a maximum damping force of approximately 778[Formula: see text]N when exposed to a current of 1.5[Formula: see text]A. Compared to the initial value of 445.06[Formula: see text]N at 0[Formula: see text]A, there has been an approximate increase of 1.74 times.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural design and multi-objective optimization of an MR isolator based on flow valve-cone rubber structure\",\"authors\":\"Pufan Zhu, Mi Zhu, Zhiyuan Zheng, Luhang Jiang, J. Fu, Miao Yu\",\"doi\":\"10.1142/s0217984924420107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the distinctive working environment of high precision machining and manufacturing field, it poses challenges in meeting the isolation requirements, including limited installation space, multi-dimensional vibration, and a wide range of vibration frequencies. To tackle these obstacles, this paper introduces a magnetorheological (MR) isolator that offers adjustable vertical damping characteristics while guaranteeing three-axis vibration isolation through an inclined cone structure. First, the structure of the isolator was designed by combining a flow valve damper with a conical rubber structure. Second, in pursuit of lightweight design and enhanced magnetic field strength, collaborative simulations using ANSYS and Maxwell are conducted to subject the critical components of the isolator to multi-objective optimization. The optimization results demonstrate that the mass of the isolator has been reduced by approximately 27.7%, while the magnetic field intensity has increased by around 20%. Finally, the performance of the MR isolator was verified through static testing and dynamic testing, respectively. The experimental results demonstrate that the isolator can generate a maximum damping force of approximately 778[Formula: see text]N when exposed to a current of 1.5[Formula: see text]A. Compared to the initial value of 445.06[Formula: see text]N at 0[Formula: see text]A, there has been an approximate increase of 1.74 times.\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924420107\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924420107","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由于高精密加工和制造领域工作环境的特殊性,在满足隔振要求方面存在诸多挑战,包括有限的安装空间、多维振动和宽广的振动频率范围。为了解决这些障碍,本文介绍了一种磁流变(MR)隔振器,它具有可调节的垂直阻尼特性,同时通过倾斜的锥体结构保证三轴隔振。首先,隔离器的结构是通过将流量阀阻尼器与锥形橡胶结构相结合而设计的。其次,为了追求轻量化设计和增强磁场强度,使用 ANSYS 和 Maxwell 进行了协同仿真,对隔振器的关键部件进行了多目标优化。优化结果表明,隔离器的质量减少了约 27.7%,而磁场强度则增加了约 20%。最后,分别通过静态测试和动态测试验证了磁共振隔离器的性能。实验结果表明,当暴露在 1.5[式:见正文]A 的电流下时,隔离器可产生约 778[式:见正文]牛顿的最大阻尼力。与 0[式:见正文]A时的初始值 445.06[式:见正文]N 相比,大约增加了 1.74 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural design and multi-objective optimization of an MR isolator based on flow valve-cone rubber structure
Due to the distinctive working environment of high precision machining and manufacturing field, it poses challenges in meeting the isolation requirements, including limited installation space, multi-dimensional vibration, and a wide range of vibration frequencies. To tackle these obstacles, this paper introduces a magnetorheological (MR) isolator that offers adjustable vertical damping characteristics while guaranteeing three-axis vibration isolation through an inclined cone structure. First, the structure of the isolator was designed by combining a flow valve damper with a conical rubber structure. Second, in pursuit of lightweight design and enhanced magnetic field strength, collaborative simulations using ANSYS and Maxwell are conducted to subject the critical components of the isolator to multi-objective optimization. The optimization results demonstrate that the mass of the isolator has been reduced by approximately 27.7%, while the magnetic field intensity has increased by around 20%. Finally, the performance of the MR isolator was verified through static testing and dynamic testing, respectively. The experimental results demonstrate that the isolator can generate a maximum damping force of approximately 778[Formula: see text]N when exposed to a current of 1.5[Formula: see text]A. Compared to the initial value of 445.06[Formula: see text]N at 0[Formula: see text]A, there has been an approximate increase of 1.74 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
期刊最新文献
An appropriate statistical approach for non-equilibrium particle production Analytical analysis of 2D couple stress flow of blood base nanofluids with the influence of viscous dissipation over a stretching surface Thermal improvement of the porous system through numerical solution of nanofluid under the existence of activation energy and Lorentz force A novel study of analytical solutions of some important nonlinear fractional differential equations in fluid dynamics Unsteady MHD dusty fluid flow over a non-isothermal cone embedded in a porous medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1