为多保真度优化技术开发系统测试平台的框架

IF 0.5 Q4 ENGINEERING, MECHANICAL Journal of Verification, Validation and Uncertainty Quantification Pub Date : 2024-06-12 DOI:10.1115/1.4065719
Siyu Tao, Chaitra Sharma, Srikanth Devanathan
{"title":"为多保真度优化技术开发系统测试平台的框架","authors":"Siyu Tao, Chaitra Sharma, Srikanth Devanathan","doi":"10.1115/1.4065719","DOIUrl":null,"url":null,"abstract":"\n Multi-fidelity (MF) models abound in simulation-based engineering fields. Many MF strategies have been proposed to improve the efficiency in engineering processes, especially in design optimization. When it comes to assessing the performance of MF optimization techniques, existing practice usually relies on test cases involving contrived MF models of seemingly random math functions, due to limited access to real-world MF models. While it is acceptable to use contrived MF models, these models are often manually written up rather than created in a systematic manner. This gives rise to the potential pitfall that the test MF models may be not representative of general scenarios. We propose a framework to generate test MF models systematically and characterize tested MF optimization methods' performances comprehensively. In our framework, the MF models are generated based on given high-fidelity (HF) model and come with two parameters to control their fidelity levels and allow model randomization. In our testing process, MF case problems are systematically formulated using our model creation method. Running the given MF optimization technique on these problems produces what we call “savings curve” that characterizes the method's performance similarly to how ROC curves characterize machine learning classifiers. Our test results also allow plotting “optimality curves” that serve similar functionality to savings curves in certain types of problems. The flexibility of our MF model creation facilitates the development of testing processes for general MF problem scenarios, and our framework can be easily extended to other MF applications than optimization.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Developing Systematic Testbeds for Multi-Fidelity Optimization Techniques\",\"authors\":\"Siyu Tao, Chaitra Sharma, Srikanth Devanathan\",\"doi\":\"10.1115/1.4065719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Multi-fidelity (MF) models abound in simulation-based engineering fields. Many MF strategies have been proposed to improve the efficiency in engineering processes, especially in design optimization. When it comes to assessing the performance of MF optimization techniques, existing practice usually relies on test cases involving contrived MF models of seemingly random math functions, due to limited access to real-world MF models. While it is acceptable to use contrived MF models, these models are often manually written up rather than created in a systematic manner. This gives rise to the potential pitfall that the test MF models may be not representative of general scenarios. We propose a framework to generate test MF models systematically and characterize tested MF optimization methods' performances comprehensively. In our framework, the MF models are generated based on given high-fidelity (HF) model and come with two parameters to control their fidelity levels and allow model randomization. In our testing process, MF case problems are systematically formulated using our model creation method. Running the given MF optimization technique on these problems produces what we call “savings curve” that characterizes the method's performance similarly to how ROC curves characterize machine learning classifiers. Our test results also allow plotting “optimality curves” that serve similar functionality to savings curves in certain types of problems. The flexibility of our MF model creation facilitates the development of testing processes for general MF problem scenarios, and our framework can be easily extended to other MF applications than optimization.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在基于仿真的工程领域,多保真(MF)模型比比皆是。为了提高工程流程的效率,特别是优化设计的效率,人们提出了许多 MF 策略。在评估 MF 优化技术的性能时,由于获取真实世界 MF 模型的途径有限,现有实践通常依赖于涉及看似随机数学函数的人造 MF 模型的测试案例。虽然使用人工合成的 MF 模型是可以接受的,但这些模型往往是人工编写的,而不是以系统的方式创建的。这就带来了潜在的隐患,即测试 MF 模型可能无法代表一般情况。我们提出了一个框架,用于系统地生成测试中频模型,并全面描述测试中频优化方法的性能。在我们的框架中,MF 模型是基于给定的高保真(HF)模型生成的,并带有两个参数来控制其保真度水平,并允许模型随机化。在我们的测试过程中,MF 案例问题是利用我们的模型创建方法系统地制定的。在这些问题上运行给定的 MF 优化技术,会产生我们所说的 "节省曲线",该曲线描述了该方法的性能,类似于 ROC 曲线描述机器学习分类器的性能。我们的测试结果还允许绘制 "优化曲线",在某些类型的问题中,它的功能与节省曲线类似。我们创建 MF 模型的灵活性有助于为一般 MF 问题场景开发测试流程,而且我们的框架可以轻松扩展到优化以外的其他 MF 应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework for Developing Systematic Testbeds for Multi-Fidelity Optimization Techniques
Multi-fidelity (MF) models abound in simulation-based engineering fields. Many MF strategies have been proposed to improve the efficiency in engineering processes, especially in design optimization. When it comes to assessing the performance of MF optimization techniques, existing practice usually relies on test cases involving contrived MF models of seemingly random math functions, due to limited access to real-world MF models. While it is acceptable to use contrived MF models, these models are often manually written up rather than created in a systematic manner. This gives rise to the potential pitfall that the test MF models may be not representative of general scenarios. We propose a framework to generate test MF models systematically and characterize tested MF optimization methods' performances comprehensively. In our framework, the MF models are generated based on given high-fidelity (HF) model and come with two parameters to control their fidelity levels and allow model randomization. In our testing process, MF case problems are systematically formulated using our model creation method. Running the given MF optimization technique on these problems produces what we call “savings curve” that characterizes the method's performance similarly to how ROC curves characterize machine learning classifiers. Our test results also allow plotting “optimality curves” that serve similar functionality to savings curves in certain types of problems. The flexibility of our MF model creation facilitates the development of testing processes for general MF problem scenarios, and our framework can be easily extended to other MF applications than optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
期刊最新文献
A Curved Surface Integral Method for Reliability Analysis of Multiple Failure Modes System with Non-Overlapping Failure Domains A Framework for Developing Systematic Testbeds for Multi-Fidelity Optimization Techniques Reliability Analysis for RV Reducer by Combining PCE and Saddlepoint Approximation Considering Multi-Failure Modes Machine Learning-Based Resilience Modeling and Assessment of High Consequence Systems Under Uncertainty Posterior Covariance Matrix Approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1