机器学习在心脏病学和心脏外科风险评估评分中的应用

Suyog Mokashi, Martin Keane
{"title":"机器学习在心脏病学和心脏外科风险评估评分中的应用","authors":"Suyog Mokashi, Martin Keane","doi":"10.1177/26324636241258265","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) has attracted great interest in the world of cardiology and cardiovascular surgery. For simplicity, AI has 3 distinct sectors: machine learning (ML), deep learning, and generative AI. In the case of ML, when calculating cardiovascular risk scores, ML algorithms analyze large, complex datasets (data mining) to predict the risk of morbidity and mortality.","PeriodicalId":429933,"journal":{"name":"Indian Journal of Clinical Cardiology","volume":"134 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Utility of Machine Learning for Cardiology and Cardiac Surgery Risk Assessment Scores\",\"authors\":\"Suyog Mokashi, Martin Keane\",\"doi\":\"10.1177/26324636241258265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI) has attracted great interest in the world of cardiology and cardiovascular surgery. For simplicity, AI has 3 distinct sectors: machine learning (ML), deep learning, and generative AI. In the case of ML, when calculating cardiovascular risk scores, ML algorithms analyze large, complex datasets (data mining) to predict the risk of morbidity and mortality.\",\"PeriodicalId\":429933,\"journal\":{\"name\":\"Indian Journal of Clinical Cardiology\",\"volume\":\"134 42\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Clinical Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26324636241258265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Clinical Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26324636241258265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)在心脏病学和心血管外科领域引起了极大的兴趣。简单来说,人工智能有三个不同的领域:机器学习(ML)、深度学习和生成式人工智能。就机器学习而言,在计算心血管风险评分时,机器学习算法会分析大量复杂的数据集(数据挖掘),以预测发病和死亡风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Utility of Machine Learning for Cardiology and Cardiac Surgery Risk Assessment Scores
Artificial intelligence (AI) has attracted great interest in the world of cardiology and cardiovascular surgery. For simplicity, AI has 3 distinct sectors: machine learning (ML), deep learning, and generative AI. In the case of ML, when calculating cardiovascular risk scores, ML algorithms analyze large, complex datasets (data mining) to predict the risk of morbidity and mortality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Unusual Primary Paraneoplastic Manifestation of Adenocarcinoma of Lung The Utility of Machine Learning for Cardiology and Cardiac Surgery Risk Assessment Scores A Fascinating Electrocardiogram with an Apparent Alternating PR Interval Role of Proton Pump Inhibitors in Cardiac Patients: Guideline Recommendations Versus Practical Approach An Interesting Case of Bigeminy with Presyncope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1