离散对称性在垂直多孔微通道自然对流中的应用

IF 4.3 3区 工程技术 Q1 MECHANICS Journal of Non-Equilibrium Thermodynamics Pub Date : 2024-06-12 DOI:10.1515/jnet-2024-0006
A. Avramenko, I. Shevchuk, M. Kovetskaya, Y. Kovetska, A.S. Kobzar
{"title":"离散对称性在垂直多孔微通道自然对流中的应用","authors":"A. Avramenko, I. Shevchuk, M. Kovetskaya, Y. Kovetska, A.S. Kobzar","doi":"10.1515/jnet-2024-0006","DOIUrl":null,"url":null,"abstract":"Abstract This work focuses on the study of natural convection in a flat porous microchannel with asymmetric heating. The novelty of the work lies in the fact that for the first time the method of discrete symmetries was used to analyze the complete system of Navier–Stokes and energy equations in a two-dimensional approximation. Analytical solutions for velocity and temperature profiles have been derived based on symmetry analysis, taking into account boundary conditions such as slip and temperature jump at the channel walls. The effect of Grashof, Knudsen, Darcy, and Prandtl numbers on the flow characteristics in the microchannel and heat transfer coefficients was elucidated. At high Grashof numbers, an ascending flow near the hot wall and a descending flow near the cold wall arise. Increasing the Knudsen number leads to an increase in the velocity, temperature jump at the walls and a decrease in heat transfer coefficients. As the Darcy number increases, velocities amplify in both ascending and descending flows. The temperature jump at the hot wall grows up, while it remains unchanged at the cold wall. In the same time, the heat transfer coefficient at the hot wall decreases.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of discrete symmetry to natural convection in vertical porous microchannels\",\"authors\":\"A. Avramenko, I. Shevchuk, M. Kovetskaya, Y. Kovetska, A.S. Kobzar\",\"doi\":\"10.1515/jnet-2024-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work focuses on the study of natural convection in a flat porous microchannel with asymmetric heating. The novelty of the work lies in the fact that for the first time the method of discrete symmetries was used to analyze the complete system of Navier–Stokes and energy equations in a two-dimensional approximation. Analytical solutions for velocity and temperature profiles have been derived based on symmetry analysis, taking into account boundary conditions such as slip and temperature jump at the channel walls. The effect of Grashof, Knudsen, Darcy, and Prandtl numbers on the flow characteristics in the microchannel and heat transfer coefficients was elucidated. At high Grashof numbers, an ascending flow near the hot wall and a descending flow near the cold wall arise. Increasing the Knudsen number leads to an increase in the velocity, temperature jump at the walls and a decrease in heat transfer coefficients. As the Darcy number increases, velocities amplify in both ascending and descending flows. The temperature jump at the hot wall grows up, while it remains unchanged at the cold wall. In the same time, the heat transfer coefficient at the hot wall decreases.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2024-0006\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2024-0006","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 这项工作的重点是研究非对称加热的扁平多孔微通道中的自然对流。这项工作的新颖之处在于首次使用离散对称方法分析了二维近似的纳维-斯托克斯方程和能量方程的完整系统。在对称分析的基础上,考虑到滑移和通道壁温度跃迁等边界条件,得出了速度和温度曲线的解析解。研究阐明了格拉肖夫数、克努森数、达西数和普朗特尔数对微通道内流动特性和传热系数的影响。当格拉肖夫数较高时,热壁附近出现上升流,冷壁附近出现下降流。增加克努森数会导致速度增加、壁面温度跃升和传热系数下降。随着达西数的增加,上升流和下降流的速度都会放大。热壁的温度跃变增大,而冷壁的温度跃变保持不变。与此同时,热壁的传热系数降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of discrete symmetry to natural convection in vertical porous microchannels
Abstract This work focuses on the study of natural convection in a flat porous microchannel with asymmetric heating. The novelty of the work lies in the fact that for the first time the method of discrete symmetries was used to analyze the complete system of Navier–Stokes and energy equations in a two-dimensional approximation. Analytical solutions for velocity and temperature profiles have been derived based on symmetry analysis, taking into account boundary conditions such as slip and temperature jump at the channel walls. The effect of Grashof, Knudsen, Darcy, and Prandtl numbers on the flow characteristics in the microchannel and heat transfer coefficients was elucidated. At high Grashof numbers, an ascending flow near the hot wall and a descending flow near the cold wall arise. Increasing the Knudsen number leads to an increase in the velocity, temperature jump at the walls and a decrease in heat transfer coefficients. As the Darcy number increases, velocities amplify in both ascending and descending flows. The temperature jump at the hot wall grows up, while it remains unchanged at the cold wall. In the same time, the heat transfer coefficient at the hot wall decreases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
期刊最新文献
Performance analysis of quantum harmonic Otto engine and refrigerator under a trade-off figure of merit Investigation of the operating characteristics of diesel engines with chromium oxide (Cr2O3) nanoparticles dispersed in Mesua ferrea biodiesel: an experimental and predictive approach using ANNs and RSM Analytical solutions for nonequilibrium bioheat transfer in tumor during magnetic nanoparticles hyperthermia Composite liquids under high-power heating: superheat of water in micro-explosion of water-in-fuel droplets Application of a three-laser optical digital interferometry in a thermogravitational analysis for binary and ternary mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1