三叶椿中 HAK/KUP/KT 钾转运体基因家族的全基因组鉴定、特征描述和表达以及盐胁迫下 PtKUP10 的功能分析

Longfei Jin, Xinxing Yin, Mingxia Wen, Bei Huang, Feng Liu, Xinguo Li, Peng Wang
{"title":"三叶椿中 HAK/KUP/KT 钾转运体基因家族的全基因组鉴定、特征描述和表达以及盐胁迫下 PtKUP10 的功能分析","authors":"Longfei Jin, Xinxing Yin, Mingxia Wen, Bei Huang, Feng Liu, Xinguo Li, Peng Wang","doi":"10.3390/horticulturae10060628","DOIUrl":null,"url":null,"abstract":"Potassium is an essential mineral nutrient for citrus growth and stress response. In this study, the HAK/KUP/KT gene family was identified from the genome of trifoliate orange (Poncirus trifoliata). The physical and chemical properties, chromosomal location, gene structure, evolutionary relationship, conserved motifs, and tissue expression characteristics were analyzed. The expression characteristics under low potassium and salt stress were analyzed by fluorescence quantitative PCR. The function of PtKUP10 was investigated by heterologous expression in Arabidopsis thaliana. The results showed that at least 18 PtKUPs were distributed in seven chromosomes. Phylogenetic analysis showed that four PtKUPs clustered in clade I, which mediated the high-affinity potassium absorption. Gene expression analysis showed that four PtKUPs were highly expressed in root, seven PtKUPs were up-regulated by low potassium stress, and nine PtKUPs were up-regulated by salt stress. The cis-acting elements on the promoter of PtKUPs were predominantly involved in stress and hormone responses. Overexpression of PtKUP10 in Arabidopsis thaliana could enhance salt tolerance by accumulating more potassium in the shoot and reducing sodium content in the shoots and roots. These results indicated that PtKUPs play important roles in potassium absorption and salt stress response, and PtKUP10 might enhance salt tolerance by maintaining potassium and sodium homeostasis.","PeriodicalId":507445,"journal":{"name":"Horticulturae","volume":"107 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-Wide Identification, Characterization, and Expression of the HAK/KUP/KT Potassium Transporter Gene Family in Poncirus trifoliata and Functional Analysis of PtKUP10 under Salt Stress\",\"authors\":\"Longfei Jin, Xinxing Yin, Mingxia Wen, Bei Huang, Feng Liu, Xinguo Li, Peng Wang\",\"doi\":\"10.3390/horticulturae10060628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potassium is an essential mineral nutrient for citrus growth and stress response. In this study, the HAK/KUP/KT gene family was identified from the genome of trifoliate orange (Poncirus trifoliata). The physical and chemical properties, chromosomal location, gene structure, evolutionary relationship, conserved motifs, and tissue expression characteristics were analyzed. The expression characteristics under low potassium and salt stress were analyzed by fluorescence quantitative PCR. The function of PtKUP10 was investigated by heterologous expression in Arabidopsis thaliana. The results showed that at least 18 PtKUPs were distributed in seven chromosomes. Phylogenetic analysis showed that four PtKUPs clustered in clade I, which mediated the high-affinity potassium absorption. Gene expression analysis showed that four PtKUPs were highly expressed in root, seven PtKUPs were up-regulated by low potassium stress, and nine PtKUPs were up-regulated by salt stress. The cis-acting elements on the promoter of PtKUPs were predominantly involved in stress and hormone responses. Overexpression of PtKUP10 in Arabidopsis thaliana could enhance salt tolerance by accumulating more potassium in the shoot and reducing sodium content in the shoots and roots. These results indicated that PtKUPs play important roles in potassium absorption and salt stress response, and PtKUP10 might enhance salt tolerance by maintaining potassium and sodium homeostasis.\",\"PeriodicalId\":507445,\"journal\":{\"name\":\"Horticulturae\",\"volume\":\"107 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10060628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/horticulturae10060628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钾是柑橘生长和应激反应所必需的矿物质养分。本研究从三叶橙(Poncirus trifoliata)基因组中鉴定了 HAK/KUP/KT 基因家族。研究分析了HAK/KUP/KT基因家族的理化性质、染色体位置、基因结构、进化关系、保守基序和组织表达特征。通过荧光定量 PCR 分析了低钾和盐胁迫下的表达特征。在拟南芥中通过异源表达研究了PtKUP10的功能。结果表明,至少有 18 个 PtKUPs 分布在 7 条染色体上。系统进化分析表明,4 个 PtKUP 聚类在支系 I 中,它们介导了高亲和性钾吸收。基因表达分析表明,4个PtKUPs在根中高表达,7个PtKUPs在低钾胁迫下上调,9个PtKUPs在盐胁迫下上调。PtKUPs启动子上的顺式作用元件主要参与胁迫和激素反应。在拟南芥中过表达 PtKUP10 可通过在芽中积累更多的钾并减少芽和根中的钠含量来提高耐盐性。这些结果表明,PtKUPs 在钾吸收和盐胁迫响应中发挥着重要作用,PtKUP10 可通过维持钾和钠的平衡来提高耐盐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-Wide Identification, Characterization, and Expression of the HAK/KUP/KT Potassium Transporter Gene Family in Poncirus trifoliata and Functional Analysis of PtKUP10 under Salt Stress
Potassium is an essential mineral nutrient for citrus growth and stress response. In this study, the HAK/KUP/KT gene family was identified from the genome of trifoliate orange (Poncirus trifoliata). The physical and chemical properties, chromosomal location, gene structure, evolutionary relationship, conserved motifs, and tissue expression characteristics were analyzed. The expression characteristics under low potassium and salt stress were analyzed by fluorescence quantitative PCR. The function of PtKUP10 was investigated by heterologous expression in Arabidopsis thaliana. The results showed that at least 18 PtKUPs were distributed in seven chromosomes. Phylogenetic analysis showed that four PtKUPs clustered in clade I, which mediated the high-affinity potassium absorption. Gene expression analysis showed that four PtKUPs were highly expressed in root, seven PtKUPs were up-regulated by low potassium stress, and nine PtKUPs were up-regulated by salt stress. The cis-acting elements on the promoter of PtKUPs were predominantly involved in stress and hormone responses. Overexpression of PtKUP10 in Arabidopsis thaliana could enhance salt tolerance by accumulating more potassium in the shoot and reducing sodium content in the shoots and roots. These results indicated that PtKUPs play important roles in potassium absorption and salt stress response, and PtKUP10 might enhance salt tolerance by maintaining potassium and sodium homeostasis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Soil Management Practices on Soil Culturable Bacteriota and Species Diversity in Central European a Productive Vineyard under Warm and Dry Conditions Can Multi-Temporal Vegetation Indices and Machine Learning Algorithms Be Used for Estimation of Groundnut Canopy State Variables? Resistances and Physiological Responses of Impatiens uliginosa to Copper Stress Xylem Vessel Size Is Related to Grapevine Susceptibility to Phaeomoniella chlamydospora Correction: Yadav et al. Assessment of Gene Action and Identification of Heterotic Hybrids for Enhancing Yield in Field Pea. Horticulturae 2023, 9, 997
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1