Longfei Jin, Xinxing Yin, Mingxia Wen, Bei Huang, Feng Liu, Xinguo Li, Peng Wang
{"title":"三叶椿中 HAK/KUP/KT 钾转运体基因家族的全基因组鉴定、特征描述和表达以及盐胁迫下 PtKUP10 的功能分析","authors":"Longfei Jin, Xinxing Yin, Mingxia Wen, Bei Huang, Feng Liu, Xinguo Li, Peng Wang","doi":"10.3390/horticulturae10060628","DOIUrl":null,"url":null,"abstract":"Potassium is an essential mineral nutrient for citrus growth and stress response. In this study, the HAK/KUP/KT gene family was identified from the genome of trifoliate orange (Poncirus trifoliata). The physical and chemical properties, chromosomal location, gene structure, evolutionary relationship, conserved motifs, and tissue expression characteristics were analyzed. The expression characteristics under low potassium and salt stress were analyzed by fluorescence quantitative PCR. The function of PtKUP10 was investigated by heterologous expression in Arabidopsis thaliana. The results showed that at least 18 PtKUPs were distributed in seven chromosomes. Phylogenetic analysis showed that four PtKUPs clustered in clade I, which mediated the high-affinity potassium absorption. Gene expression analysis showed that four PtKUPs were highly expressed in root, seven PtKUPs were up-regulated by low potassium stress, and nine PtKUPs were up-regulated by salt stress. The cis-acting elements on the promoter of PtKUPs were predominantly involved in stress and hormone responses. Overexpression of PtKUP10 in Arabidopsis thaliana could enhance salt tolerance by accumulating more potassium in the shoot and reducing sodium content in the shoots and roots. These results indicated that PtKUPs play important roles in potassium absorption and salt stress response, and PtKUP10 might enhance salt tolerance by maintaining potassium and sodium homeostasis.","PeriodicalId":507445,"journal":{"name":"Horticulturae","volume":"107 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-Wide Identification, Characterization, and Expression of the HAK/KUP/KT Potassium Transporter Gene Family in Poncirus trifoliata and Functional Analysis of PtKUP10 under Salt Stress\",\"authors\":\"Longfei Jin, Xinxing Yin, Mingxia Wen, Bei Huang, Feng Liu, Xinguo Li, Peng Wang\",\"doi\":\"10.3390/horticulturae10060628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potassium is an essential mineral nutrient for citrus growth and stress response. In this study, the HAK/KUP/KT gene family was identified from the genome of trifoliate orange (Poncirus trifoliata). The physical and chemical properties, chromosomal location, gene structure, evolutionary relationship, conserved motifs, and tissue expression characteristics were analyzed. The expression characteristics under low potassium and salt stress were analyzed by fluorescence quantitative PCR. The function of PtKUP10 was investigated by heterologous expression in Arabidopsis thaliana. The results showed that at least 18 PtKUPs were distributed in seven chromosomes. Phylogenetic analysis showed that four PtKUPs clustered in clade I, which mediated the high-affinity potassium absorption. Gene expression analysis showed that four PtKUPs were highly expressed in root, seven PtKUPs were up-regulated by low potassium stress, and nine PtKUPs were up-regulated by salt stress. The cis-acting elements on the promoter of PtKUPs were predominantly involved in stress and hormone responses. Overexpression of PtKUP10 in Arabidopsis thaliana could enhance salt tolerance by accumulating more potassium in the shoot and reducing sodium content in the shoots and roots. These results indicated that PtKUPs play important roles in potassium absorption and salt stress response, and PtKUP10 might enhance salt tolerance by maintaining potassium and sodium homeostasis.\",\"PeriodicalId\":507445,\"journal\":{\"name\":\"Horticulturae\",\"volume\":\"107 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10060628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/horticulturae10060628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genome-Wide Identification, Characterization, and Expression of the HAK/KUP/KT Potassium Transporter Gene Family in Poncirus trifoliata and Functional Analysis of PtKUP10 under Salt Stress
Potassium is an essential mineral nutrient for citrus growth and stress response. In this study, the HAK/KUP/KT gene family was identified from the genome of trifoliate orange (Poncirus trifoliata). The physical and chemical properties, chromosomal location, gene structure, evolutionary relationship, conserved motifs, and tissue expression characteristics were analyzed. The expression characteristics under low potassium and salt stress were analyzed by fluorescence quantitative PCR. The function of PtKUP10 was investigated by heterologous expression in Arabidopsis thaliana. The results showed that at least 18 PtKUPs were distributed in seven chromosomes. Phylogenetic analysis showed that four PtKUPs clustered in clade I, which mediated the high-affinity potassium absorption. Gene expression analysis showed that four PtKUPs were highly expressed in root, seven PtKUPs were up-regulated by low potassium stress, and nine PtKUPs were up-regulated by salt stress. The cis-acting elements on the promoter of PtKUPs were predominantly involved in stress and hormone responses. Overexpression of PtKUP10 in Arabidopsis thaliana could enhance salt tolerance by accumulating more potassium in the shoot and reducing sodium content in the shoots and roots. These results indicated that PtKUPs play important roles in potassium absorption and salt stress response, and PtKUP10 might enhance salt tolerance by maintaining potassium and sodium homeostasis.