利用限价订单簿斜率的盘中预测降低交易成本

IF 3.4 3区 经济学 Q1 ECONOMICS Journal of Forecasting Pub Date : 2024-06-12 DOI:10.1002/for.3164
Chahid Ahabchane, Tolga Cenesizoglu, Gunnar Grass, Sanjay Dominik Jena
{"title":"利用限价订单簿斜率的盘中预测降低交易成本","authors":"Chahid Ahabchane,&nbsp;Tolga Cenesizoglu,&nbsp;Gunnar Grass,&nbsp;Sanjay Dominik Jena","doi":"10.1002/for.3164","DOIUrl":null,"url":null,"abstract":"<p>Market participants who need to trade a significant number of securities within a given period can face high transaction costs. In this paper, we document how improvements in intraday liquidity forecasts can help reduce total transaction costs. We compare various approaches for forecasting intraday transaction costs, including autoregressive and machine learning models, using comprehensive ultra-high-frequency limit order book data for a sample of NYSE stocks from 2002 to 2012. Our results indicate that improved liquidity forecasts can significantly decrease total transaction costs. Simple models capturing seasonality in market liquidity tend to outperform alternative models.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3164","citationCount":"0","resultStr":"{\"title\":\"Reducing transaction costs using intraday forecasts of limit order book slopes\",\"authors\":\"Chahid Ahabchane,&nbsp;Tolga Cenesizoglu,&nbsp;Gunnar Grass,&nbsp;Sanjay Dominik Jena\",\"doi\":\"10.1002/for.3164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Market participants who need to trade a significant number of securities within a given period can face high transaction costs. In this paper, we document how improvements in intraday liquidity forecasts can help reduce total transaction costs. We compare various approaches for forecasting intraday transaction costs, including autoregressive and machine learning models, using comprehensive ultra-high-frequency limit order book data for a sample of NYSE stocks from 2002 to 2012. Our results indicate that improved liquidity forecasts can significantly decrease total transaction costs. Simple models capturing seasonality in market liquidity tend to outperform alternative models.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3164\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3164\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3164","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

需要在一定时期内交易大量证券的市场参与者可能会面临高昂的交易成本。在本文中,我们记录了盘中流动性预测的改进如何有助于降低总交易成本。我们使用 2002 年至 2012 年纽约证券交易所股票样本的全面超高频限价订单簿数据,比较了预测盘中交易成本的各种方法,包括自回归模型和机器学习模型。我们的研究结果表明,改进流动性预测可以显著降低总交易成本。捕捉市场流动性季节性的简单模型往往优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing transaction costs using intraday forecasts of limit order book slopes

Market participants who need to trade a significant number of securities within a given period can face high transaction costs. In this paper, we document how improvements in intraday liquidity forecasts can help reduce total transaction costs. We compare various approaches for forecasting intraday transaction costs, including autoregressive and machine learning models, using comprehensive ultra-high-frequency limit order book data for a sample of NYSE stocks from 2002 to 2012. Our results indicate that improved liquidity forecasts can significantly decrease total transaction costs. Simple models capturing seasonality in market liquidity tend to outperform alternative models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
期刊最新文献
Issue Information Issue Information Predictor Preselection for Mixed‐Frequency Dynamic Factor Models: A Simulation Study With an Empirical Application to GDP Nowcasting Deep Dive Into Churn Prediction in the Banking Sector: The Challenge of Hyperparameter Selection and Imbalanced Learning Demand Forecasting New Fashion Products: A Review Paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1