使用基于人工智能的机器学习模型进行资产管理的综述:电力和能源系统的应用

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Generation Transmission & Distribution Pub Date : 2024-06-12 DOI:10.1049/gtd2.13183
Gopal Lal Rajora, Miguel A. Sanz-Bobi, Lina Bertling Tjernberg, José Eduardo Urrea Cabus
{"title":"使用基于人工智能的机器学习模型进行资产管理的综述:电力和能源系统的应用","authors":"Gopal Lal Rajora,&nbsp;Miguel A. Sanz-Bobi,&nbsp;Lina Bertling Tjernberg,&nbsp;José Eduardo Urrea Cabus","doi":"10.1049/gtd2.13183","DOIUrl":null,"url":null,"abstract":"<p>Power system protection and asset management present persistent technical challenges, particularly in the context of the smart grid and renewable energy sectors. This paper aims to address these challenges by providing a comprehensive assessment of machine learning applications for effective asset management in power systems. The study focuses on the increasing demand for energy production while maintaining environmental sustainability and efficiency. By harnessing the power of modern technologies such as artificial intelligence (AI), machine learning (ML), and deep learning (DL), this research explores how ML techniques can be leveraged as powerful tools for the power industry. By showcasing practical applications and success stories, this paper demonstrates the growing acceptance of machine learning as a significant technology for current and future business needs in the power sector. Additionally, the study examines the barriers and difficulties of large-scale ML deployment in practical settings while exploring potential opportunities for these tactics. Through this overview, insights into the transformative potential of ML in shaping the future of power system asset management are provided.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13183","citationCount":"0","resultStr":"{\"title\":\"A review of asset management using artificial intelligence-based machine learning models: Applications for the electric power and energy system\",\"authors\":\"Gopal Lal Rajora,&nbsp;Miguel A. Sanz-Bobi,&nbsp;Lina Bertling Tjernberg,&nbsp;José Eduardo Urrea Cabus\",\"doi\":\"10.1049/gtd2.13183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Power system protection and asset management present persistent technical challenges, particularly in the context of the smart grid and renewable energy sectors. This paper aims to address these challenges by providing a comprehensive assessment of machine learning applications for effective asset management in power systems. The study focuses on the increasing demand for energy production while maintaining environmental sustainability and efficiency. By harnessing the power of modern technologies such as artificial intelligence (AI), machine learning (ML), and deep learning (DL), this research explores how ML techniques can be leveraged as powerful tools for the power industry. By showcasing practical applications and success stories, this paper demonstrates the growing acceptance of machine learning as a significant technology for current and future business needs in the power sector. Additionally, the study examines the barriers and difficulties of large-scale ML deployment in practical settings while exploring potential opportunities for these tactics. Through this overview, insights into the transformative potential of ML in shaping the future of power system asset management are provided.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13183\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13183\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13183","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

电力系统保护和资产管理是长期存在的技术挑战,尤其是在智能电网和可再生能源领域。本文旨在全面评估机器学习在电力系统有效资产管理中的应用,从而应对这些挑战。研究的重点是在保持环境可持续性和效率的同时,能源生产需求的不断增长。通过利用人工智能(AI)、机器学习(ML)和深度学习(DL)等现代技术的力量,本研究探讨了如何利用 ML 技术作为电力行业的强大工具。通过展示实际应用和成功案例,本文证明了机器学习作为满足电力行业当前和未来业务需求的一项重要技术正被越来越多的人所接受。此外,本研究还探讨了在实际环境中大规模部署 ML 的障碍和困难,同时探索了这些策略的潜在机遇。通过这一概述,我们可以深入了解 ML 在塑造未来电力系统资产管理方面的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of asset management using artificial intelligence-based machine learning models: Applications for the electric power and energy system

Power system protection and asset management present persistent technical challenges, particularly in the context of the smart grid and renewable energy sectors. This paper aims to address these challenges by providing a comprehensive assessment of machine learning applications for effective asset management in power systems. The study focuses on the increasing demand for energy production while maintaining environmental sustainability and efficiency. By harnessing the power of modern technologies such as artificial intelligence (AI), machine learning (ML), and deep learning (DL), this research explores how ML techniques can be leveraged as powerful tools for the power industry. By showcasing practical applications and success stories, this paper demonstrates the growing acceptance of machine learning as a significant technology for current and future business needs in the power sector. Additionally, the study examines the barriers and difficulties of large-scale ML deployment in practical settings while exploring potential opportunities for these tactics. Through this overview, insights into the transformative potential of ML in shaping the future of power system asset management are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
期刊最新文献
Front Cover: Disturbance observer-based finite-time control of a photovoltaic-battery hybrid power system Security constrained optimal power shutoff for wildfire risk mitigation Disturbance observer-based finite-time control of a photovoltaic-battery hybrid power system Multi-agent reinforcement learning in a new transactive energy mechanism Optimized operation of integrated electricity-HCNG systems with distributed hydrogen injecting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1