商业相关条件下盐包水 K-Acetate 电解质锌离子电池的电化学和循环分析

D. Turney, Debayon Dutta, Sanjoy Banerjee, Timothy N. Lambert, Nelson S. Bell
{"title":"商业相关条件下盐包水 K-Acetate 电解质锌离子电池的电化学和循环分析","authors":"D. Turney, Debayon Dutta, Sanjoy Banerjee, Timothy N. Lambert, Nelson S. Bell","doi":"10.1149/1945-7111/ad5769","DOIUrl":null,"url":null,"abstract":"\n Water-in-salt electrolyte (WiSE) promises high-voltage battery technology with low fire risk. Here we assess potassium acetate (KAc) WiSE for Zn ion batteries under commercially relevant conditions. Rotating disc electrode analysis of WiSE degradation and Zn plating/deplating suggest a solid electrolyte interphase (SEI) layer dominates. Butler-Volmer kinetics and Koutecky-Levich mass-transfer are of secondary importance. Measurements of chemical potential reveal that bulk solvation of H2O (in KAc or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) WiSE) is insignificant compared to SEI blocking. Zinc cycling in KAc WiSE with practical rates (~0.3 to 8.0 mA/cm2) and areal capacities (>20 mAh/cm2) shows dendrites are less prominent than in KOH, but the SEI layer suppresses the electrochemical reaction too much for commercial feasibility. Dilution or convection of the WiSE alleviates the SEI blocking effects. Cu substrate shows good Zn adhesion, but Ti, Sn, and Ni show poor adhesion. Cathodes made with chevrel (Mo6S8) reversibly intercalate Zn2+ to form a novel battery technology, but yield <1.0 V cell voltage. Cathodes made with zinc-containing Prussian blue analogues (ZnHCF or ZnMnHCF) yield a voltage near 2.0 V but appear incompatible with cycling in the present KAc WiSE formulation. Future research directions for KAc WiSE are proposed to focus on SEI dynamics and Prussian blue compatibility","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical and Cycle Analysis of Water-in-Salt K-Acetate Electrolyte Zn-Ion Batteries Under Commercially-Relevant Conditions\",\"authors\":\"D. Turney, Debayon Dutta, Sanjoy Banerjee, Timothy N. Lambert, Nelson S. Bell\",\"doi\":\"10.1149/1945-7111/ad5769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Water-in-salt electrolyte (WiSE) promises high-voltage battery technology with low fire risk. Here we assess potassium acetate (KAc) WiSE for Zn ion batteries under commercially relevant conditions. Rotating disc electrode analysis of WiSE degradation and Zn plating/deplating suggest a solid electrolyte interphase (SEI) layer dominates. Butler-Volmer kinetics and Koutecky-Levich mass-transfer are of secondary importance. Measurements of chemical potential reveal that bulk solvation of H2O (in KAc or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) WiSE) is insignificant compared to SEI blocking. Zinc cycling in KAc WiSE with practical rates (~0.3 to 8.0 mA/cm2) and areal capacities (>20 mAh/cm2) shows dendrites are less prominent than in KOH, but the SEI layer suppresses the electrochemical reaction too much for commercial feasibility. Dilution or convection of the WiSE alleviates the SEI blocking effects. Cu substrate shows good Zn adhesion, but Ti, Sn, and Ni show poor adhesion. Cathodes made with chevrel (Mo6S8) reversibly intercalate Zn2+ to form a novel battery technology, but yield <1.0 V cell voltage. Cathodes made with zinc-containing Prussian blue analogues (ZnHCF or ZnMnHCF) yield a voltage near 2.0 V but appear incompatible with cycling in the present KAc WiSE formulation. Future research directions for KAc WiSE are proposed to focus on SEI dynamics and Prussian blue compatibility\",\"PeriodicalId\":509718,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad5769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad5769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

盐包水型电解质(WiSE)有望成为低火灾风险的高压电池技术。在此,我们评估了在商业相关条件下用于锌离子电池的醋酸钾(KAc)WiSE。对 WiSE 降解和锌电镀/脱镀的旋转圆盘电极分析表明,固体电解质相间层(SEI)占主导地位。Butler-Volmer 动力学和 Koutecky-Levich 质量转移是次要的。化学势测量结果表明,与 SEI 阻滞相比,H2O 的大量溶解(在 KAc 或双三氟甲磺酰亚胺锂(LiTFSI)WiSE 中)是微不足道的。在 KAc WiSE 中以实用速率(约 0.3 至 8.0 mA/cm2)和平均容量(大于 20 mAh/cm2)进行锌循环时,树枝状突起没有在 KOH 中那么突出,但 SEI 层对电化学反应的抑制太大,不具备商业可行性。WiSE 的稀释或对流可减轻 SEI 的阻碍作用。铜基板显示出良好的锌附着性,但钛、锡和镍的附着性较差。使用 Chevrel(Mo6S8)制成的阴极可逆地插层 Zn2+,形成了一种新型电池技术,但电池电压小于 1.0 V。用含锌普鲁士蓝类似物(ZnHCF 或 ZnMnHCF)制成的阴极可产生接近 2.0 V 的电压,但似乎与目前 KAc WiSE 配方中的循环不兼容。我们提出了 KAc WiSE 的未来研究方向,重点是 SEI 动力学和普鲁士蓝兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical and Cycle Analysis of Water-in-Salt K-Acetate Electrolyte Zn-Ion Batteries Under Commercially-Relevant Conditions
Water-in-salt electrolyte (WiSE) promises high-voltage battery technology with low fire risk. Here we assess potassium acetate (KAc) WiSE for Zn ion batteries under commercially relevant conditions. Rotating disc electrode analysis of WiSE degradation and Zn plating/deplating suggest a solid electrolyte interphase (SEI) layer dominates. Butler-Volmer kinetics and Koutecky-Levich mass-transfer are of secondary importance. Measurements of chemical potential reveal that bulk solvation of H2O (in KAc or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) WiSE) is insignificant compared to SEI blocking. Zinc cycling in KAc WiSE with practical rates (~0.3 to 8.0 mA/cm2) and areal capacities (>20 mAh/cm2) shows dendrites are less prominent than in KOH, but the SEI layer suppresses the electrochemical reaction too much for commercial feasibility. Dilution or convection of the WiSE alleviates the SEI blocking effects. Cu substrate shows good Zn adhesion, but Ti, Sn, and Ni show poor adhesion. Cathodes made with chevrel (Mo6S8) reversibly intercalate Zn2+ to form a novel battery technology, but yield <1.0 V cell voltage. Cathodes made with zinc-containing Prussian blue analogues (ZnHCF or ZnMnHCF) yield a voltage near 2.0 V but appear incompatible with cycling in the present KAc WiSE formulation. Future research directions for KAc WiSE are proposed to focus on SEI dynamics and Prussian blue compatibility
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing Cold Sintering to Fabricate Composite Polymer Electrolytes - A Paradigm Shift in Organic-Inorganic Material Assembly Investigating Plastic Deformation Between Silicon and Solid Electrolyte in All-Solid-State Batteries Using Operando X-ray Tomography Mild and Fast Chemical Presodiation of Na0.44MnO2 Facile Synthesis of U2Ti Intermetallic by Direct Electrochemical Reduction of UO2-TiO2 Composite in LiCl-Li2O Melt Binderless Electrodeposited NiCo2S4-MWCNT as a Potential Anode Material for Sodium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1