印度尼西亚在优化纱线预测以提高纺织品需求准确性方面取得突破

Lely Lindyawati, I. Sari W, A. S. Cahyana, Tedjo Sukmono
{"title":"印度尼西亚在优化纱线预测以提高纺织品需求准确性方面取得突破","authors":"Lely Lindyawati, I. Sari W, A. S. Cahyana, Tedjo Sukmono","doi":"10.21070/ijins.v25i3.1164","DOIUrl":null,"url":null,"abstract":"PT. XY, a textile company specializing in woven sarongs, faces fluctuating demand during Islamic religious celebrations, impacting production. In Ramadhan 2023, production increased by 30%, but warp yarn availability was insufficient. This study forecasts warp yarn production over twelve periods, comparing Double Exponential Smoothing Holt’s (DES) and Holt-Winter’s Exponential Smoothing (WES) methods, optimized using the golden section method. Using historical data from January 2021 to April 2023, WES with golden section parameters (α1 = 0.67387, β1 = 0.08756, γ2 = 0.85408) achieved the best accuracy with a MAPE of 5.5437%. The WES method is recommended for improving production planning at PT. XY, with future research suggested to explore production correlations and procurement costs. \nHighlight: \n \nDemand Fluctuation: PT. XY experiences significant demand changes during Islamic religious celebrations. \nForecasting Methods: Comparing DES and WES methods for predicting warp yarn production. \nOptimal Accuracy: WES with golden section optimization achieved the lowest MAPE of 5.5437%. \n \n  \nKeywoard: Textile Industry, Warp yarn forecasting, Production Planning, Holt-Winter's method, Golden section optimization","PeriodicalId":431998,"journal":{"name":"Indonesian Journal of Innovation Studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indonesia's Breakthrough in Optimized Yarn Forecasting for Textile Demand Accuracy\",\"authors\":\"Lely Lindyawati, I. Sari W, A. S. Cahyana, Tedjo Sukmono\",\"doi\":\"10.21070/ijins.v25i3.1164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PT. XY, a textile company specializing in woven sarongs, faces fluctuating demand during Islamic religious celebrations, impacting production. In Ramadhan 2023, production increased by 30%, but warp yarn availability was insufficient. This study forecasts warp yarn production over twelve periods, comparing Double Exponential Smoothing Holt’s (DES) and Holt-Winter’s Exponential Smoothing (WES) methods, optimized using the golden section method. Using historical data from January 2021 to April 2023, WES with golden section parameters (α1 = 0.67387, β1 = 0.08756, γ2 = 0.85408) achieved the best accuracy with a MAPE of 5.5437%. The WES method is recommended for improving production planning at PT. XY, with future research suggested to explore production correlations and procurement costs. \\nHighlight: \\n \\nDemand Fluctuation: PT. XY experiences significant demand changes during Islamic religious celebrations. \\nForecasting Methods: Comparing DES and WES methods for predicting warp yarn production. \\nOptimal Accuracy: WES with golden section optimization achieved the lowest MAPE of 5.5437%. \\n \\n  \\nKeywoard: Textile Industry, Warp yarn forecasting, Production Planning, Holt-Winter's method, Golden section optimization\",\"PeriodicalId\":431998,\"journal\":{\"name\":\"Indonesian Journal of Innovation Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Innovation Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21070/ijins.v25i3.1164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Innovation Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21070/ijins.v25i3.1164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

PT.XY 是一家专门生产纱笼的纺织公司,在伊斯兰宗教庆典期间面临着需求波动,影响了生产。在 2023 年斋月,产量增加了 30%,但经纱供应不足。本研究比较了霍尔特双指数平滑法(DES)和霍尔特-温特指数平滑法(WES),并使用黄金分割法进行了优化,预测了十二个时期的经纱产量。使用 2021 年 1 月至 2023 年 4 月的历史数据,WES 的黄金分割参数(α1 = 0.67387,β1 = 0.08756,γ2 = 0.85408)达到了最佳精度,MAPE 为 5.5437%。建议使用 WES 方法改进 PT.XY 公司的生产计划。XY 公司的生产计划,并建议未来研究探索生产相关性和采购成本。亮点: 需求波动:PT.在伊斯兰宗教庆典期间,XY 公司的需求变化很大。预测方法:比较 DES 和 WES 预测经纱产量的方法。最佳精度:采用黄金分割优化的 WES 实现了最低的 MAPE(5.5437%)。 关键字纺织工业、经纱预测、生产计划、霍尔特-温特方法、黄金分割优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indonesia's Breakthrough in Optimized Yarn Forecasting for Textile Demand Accuracy
PT. XY, a textile company specializing in woven sarongs, faces fluctuating demand during Islamic religious celebrations, impacting production. In Ramadhan 2023, production increased by 30%, but warp yarn availability was insufficient. This study forecasts warp yarn production over twelve periods, comparing Double Exponential Smoothing Holt’s (DES) and Holt-Winter’s Exponential Smoothing (WES) methods, optimized using the golden section method. Using historical data from January 2021 to April 2023, WES with golden section parameters (α1 = 0.67387, β1 = 0.08756, γ2 = 0.85408) achieved the best accuracy with a MAPE of 5.5437%. The WES method is recommended for improving production planning at PT. XY, with future research suggested to explore production correlations and procurement costs. Highlight: Demand Fluctuation: PT. XY experiences significant demand changes during Islamic religious celebrations. Forecasting Methods: Comparing DES and WES methods for predicting warp yarn production. Optimal Accuracy: WES with golden section optimization achieved the lowest MAPE of 5.5437%.   Keywoard: Textile Industry, Warp yarn forecasting, Production Planning, Holt-Winter's method, Golden section optimization
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the Effect of Fraud Pentagon on Financial Statement Fraud Using M-Score and F-Score Transforming Aluminum Welding Through FSW Innovations Revolutionizing Welding Ergonomics to Mitigate Musculoskeletal Risks NaOH Treatment Revolutionizes Strength of Fiber Composites Globally Overcoming Quality Control Challenges in Car Exhaust Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1