{"title":"QSKCG:基于量子的云端外包数据安全密钥通信和密钥生成方案","authors":"Vamshi Adouth, Eswari Rajagopal","doi":"10.1002/cpe.8192","DOIUrl":null,"url":null,"abstract":"<p>In the era of digital proliferation, individuals opt for cloud servers to store their data due to the diverse advantages they offer. However, entrusting data to cloud servers relinquishes users' control, potentially compromising data confidentiality and integrity. Traditional auditing methods designed to ensure data integrity in cloud servers typically depend on Trusted Third Party Auditors. Yet, many of these existing auditing approaches grapple with intricate certificate management and key escrow issues. Furthermore, the imminent threat of powerful quantum computers poses a risk of swiftly compromising these methods in polynomial time. To overcome these challenges, this paper introduces a Quantum-based Secure Key Communication and Key Generation Scheme QSKCG for Outsourced Data in the Cloud. Leveraging Elliptic Curve Cryptography, the BB84 secure communication protocol, certificateless signature, and blockchain network, the proposed scheme is demonstrated through security analysis, affirming its robustness and high efficiency. Additionally, performance analysis underscores the practicality of the proposed scheme in achieving post-quantum security in cloud storage.</p>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 20","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QSKCG: Quantum-based secure key communication and key generation scheme for outsourced data in cloud\",\"authors\":\"Vamshi Adouth, Eswari Rajagopal\",\"doi\":\"10.1002/cpe.8192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the era of digital proliferation, individuals opt for cloud servers to store their data due to the diverse advantages they offer. However, entrusting data to cloud servers relinquishes users' control, potentially compromising data confidentiality and integrity. Traditional auditing methods designed to ensure data integrity in cloud servers typically depend on Trusted Third Party Auditors. Yet, many of these existing auditing approaches grapple with intricate certificate management and key escrow issues. Furthermore, the imminent threat of powerful quantum computers poses a risk of swiftly compromising these methods in polynomial time. To overcome these challenges, this paper introduces a Quantum-based Secure Key Communication and Key Generation Scheme QSKCG for Outsourced Data in the Cloud. Leveraging Elliptic Curve Cryptography, the BB84 secure communication protocol, certificateless signature, and blockchain network, the proposed scheme is demonstrated through security analysis, affirming its robustness and high efficiency. Additionally, performance analysis underscores the practicality of the proposed scheme in achieving post-quantum security in cloud storage.</p>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"36 20\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8192\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8192","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
QSKCG: Quantum-based secure key communication and key generation scheme for outsourced data in cloud
In the era of digital proliferation, individuals opt for cloud servers to store their data due to the diverse advantages they offer. However, entrusting data to cloud servers relinquishes users' control, potentially compromising data confidentiality and integrity. Traditional auditing methods designed to ensure data integrity in cloud servers typically depend on Trusted Third Party Auditors. Yet, many of these existing auditing approaches grapple with intricate certificate management and key escrow issues. Furthermore, the imminent threat of powerful quantum computers poses a risk of swiftly compromising these methods in polynomial time. To overcome these challenges, this paper introduces a Quantum-based Secure Key Communication and Key Generation Scheme QSKCG for Outsourced Data in the Cloud. Leveraging Elliptic Curve Cryptography, the BB84 secure communication protocol, certificateless signature, and blockchain network, the proposed scheme is demonstrated through security analysis, affirming its robustness and high efficiency. Additionally, performance analysis underscores the practicality of the proposed scheme in achieving post-quantum security in cloud storage.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.