神经毒剂的超分子解毒方法

IF 2.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Israel Journal of Chemistry Pub Date : 2024-06-11 DOI:10.1002/ijch.202400019
Prof. Dr. Stefan Kubik
{"title":"神经毒剂的超分子解毒方法","authors":"Prof. Dr. Stefan Kubik","doi":"10.1002/ijch.202400019","DOIUrl":null,"url":null,"abstract":"<p>A promising, but not yet practiced, approach to the treatment of neurotoxic organophosphate poisoning is the administration of a scavenger that rapidly deactivates the nerve agent before it can exert its toxic effects. The detoxification rates required for successful use of this therapy can currently only be achieved with enzymes, but synthetic scavengers, whose mode of action is based on key concepts of supramolecular chemistry, are an attractive alternative. Considerable progress has recently been made in the development of such scavengers, and compounds from several receptor classes are now available that not only bind nerve agents but also degrade them at promising rates. This review provides an overview of the field and highlights recent developments.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 6-7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400019","citationCount":"0","resultStr":"{\"title\":\"Supramolecular Approaches to the Detoxification of Nerve Agents\",\"authors\":\"Prof. Dr. Stefan Kubik\",\"doi\":\"10.1002/ijch.202400019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A promising, but not yet practiced, approach to the treatment of neurotoxic organophosphate poisoning is the administration of a scavenger that rapidly deactivates the nerve agent before it can exert its toxic effects. The detoxification rates required for successful use of this therapy can currently only be achieved with enzymes, but synthetic scavengers, whose mode of action is based on key concepts of supramolecular chemistry, are an attractive alternative. Considerable progress has recently been made in the development of such scavengers, and compounds from several receptor classes are now available that not only bind nerve agents but also degrade them at promising rates. This review provides an overview of the field and highlights recent developments.</p>\",\"PeriodicalId\":14686,\"journal\":{\"name\":\"Israel Journal of Chemistry\",\"volume\":\"64 6-7\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202400019\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202400019","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

治疗神经毒性有机磷中毒的一种前景广阔但尚未付诸实践的方法是施用一种清除剂,在神经毒剂产生毒性作用之前迅速使其失活。目前,只有酶才能达到成功使用这种疗法所需的解毒率,但合成清除剂的作用模式基于超分子化学的关键概念,是一种有吸引力的替代方法。最近,此类清除剂的研发取得了长足的进步,目前已有多种受体类别的化合物不仅能与神经毒剂结合,还能以可喜的速度降解神经毒剂。本综述概述了这一领域,并重点介绍了最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supramolecular Approaches to the Detoxification of Nerve Agents

A promising, but not yet practiced, approach to the treatment of neurotoxic organophosphate poisoning is the administration of a scavenger that rapidly deactivates the nerve agent before it can exert its toxic effects. The detoxification rates required for successful use of this therapy can currently only be achieved with enzymes, but synthetic scavengers, whose mode of action is based on key concepts of supramolecular chemistry, are an attractive alternative. Considerable progress has recently been made in the development of such scavengers, and compounds from several receptor classes are now available that not only bind nerve agents but also degrade them at promising rates. This review provides an overview of the field and highlights recent developments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Israel Journal of Chemistry
Israel Journal of Chemistry 化学-化学综合
CiteScore
6.20
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry. The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH. The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.
期刊最新文献
Cover Picture: (Isr. J. Chem. 8-9/2024) Special Issue on RNA-Based Catalysts that Revolutionized the Discovery of Bioactive Peptides Hexagonal and Trigonal Quasiperiodic Tilings Breaking the Degeneracy of Sense Codons – How Far Can We Go? Cover Picture: (Isr. J. Chem. 6-7/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1