脑机接口在元宇宙中的应用进展

Yang Liu, Ruibin Liu, Jin-nian Ge, Yue Wang
{"title":"脑机接口在元宇宙中的应用进展","authors":"Yang Liu, Ruibin Liu, Jin-nian Ge, Yue Wang","doi":"10.3389/fnins.2024.1383319","DOIUrl":null,"url":null,"abstract":"In recent years, with the shift of focus in metaverse research toward content exchange and social interaction, breaking through the current bottleneck of audio-visual media interaction has become an urgent issue. The use of brain-machine interfaces for sensory simulation is one of the proposed solutions. Currently, brain-machine interfaces have demonstrated irreplaceable potential as physiological signal acquisition tools in various fields within the metaverse. This study explores three application scenarios: generative art in the metaverse, serious gaming for healthcare in metaverse medicine, and brain-machine interface applications for facial expression synthesis in the virtual society of the metaverse. It investigates existing commercial products and patents (such as MindWave Mobile, GVS, and Galea), draws analogies with the development processes of network security and neurosecurity, bioethics and neuroethics, and discusses the challenges and potential issues that may arise when brain-machine interfaces mature and are widely applied. Furthermore, it looks ahead to the diverse possibilities of deep and varied applications of brain-machine interfaces in the metaverse in the future.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"30 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in brain-machine interfaces for application in the metaverse\",\"authors\":\"Yang Liu, Ruibin Liu, Jin-nian Ge, Yue Wang\",\"doi\":\"10.3389/fnins.2024.1383319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, with the shift of focus in metaverse research toward content exchange and social interaction, breaking through the current bottleneck of audio-visual media interaction has become an urgent issue. The use of brain-machine interfaces for sensory simulation is one of the proposed solutions. Currently, brain-machine interfaces have demonstrated irreplaceable potential as physiological signal acquisition tools in various fields within the metaverse. This study explores three application scenarios: generative art in the metaverse, serious gaming for healthcare in metaverse medicine, and brain-machine interface applications for facial expression synthesis in the virtual society of the metaverse. It investigates existing commercial products and patents (such as MindWave Mobile, GVS, and Galea), draws analogies with the development processes of network security and neurosecurity, bioethics and neuroethics, and discusses the challenges and potential issues that may arise when brain-machine interfaces mature and are widely applied. Furthermore, it looks ahead to the diverse possibilities of deep and varied applications of brain-machine interfaces in the metaverse in the future.\",\"PeriodicalId\":509131,\"journal\":{\"name\":\"Frontiers in Neuroscience\",\"volume\":\"30 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2024.1383319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnins.2024.1383319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着元宇宙研究的重点转向内容交换和社交互动,突破当前视听媒体交互的瓶颈已成为一个紧迫的问题。利用脑机接口进行感官模拟是提出的解决方案之一。目前,脑机接口作为生理信号采集工具,已在元宇宙的各个领域展现出不可替代的潜力。本研究探讨了三种应用场景:元宇宙中的生成艺术、元宇宙医学中用于医疗保健的严肃游戏,以及元宇宙虚拟社会中用于面部表情合成的脑机接口应用。报告调查了现有的商业产品和专利(如 MindWave Mobile、GVS 和 Galea),类比了网络安全和神经安全、生物伦理学和神经伦理学的发展过程,并讨论了脑机接口成熟和广泛应用后可能出现的挑战和潜在问题。此外,它还展望了未来脑机接口在元宇宙中深度和多样化应用的各种可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancements in brain-machine interfaces for application in the metaverse
In recent years, with the shift of focus in metaverse research toward content exchange and social interaction, breaking through the current bottleneck of audio-visual media interaction has become an urgent issue. The use of brain-machine interfaces for sensory simulation is one of the proposed solutions. Currently, brain-machine interfaces have demonstrated irreplaceable potential as physiological signal acquisition tools in various fields within the metaverse. This study explores three application scenarios: generative art in the metaverse, serious gaming for healthcare in metaverse medicine, and brain-machine interface applications for facial expression synthesis in the virtual society of the metaverse. It investigates existing commercial products and patents (such as MindWave Mobile, GVS, and Galea), draws analogies with the development processes of network security and neurosecurity, bioethics and neuroethics, and discusses the challenges and potential issues that may arise when brain-machine interfaces mature and are widely applied. Furthermore, it looks ahead to the diverse possibilities of deep and varied applications of brain-machine interfaces in the metaverse in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systems genetics identifies methionine as a high risk factor for Alzheimer's disease Limbic oxytocin receptor expression alters molecular signaling and social avoidance behavior in female prairie voles (Microtus ochrogaster) Editorial: Development of circadian clock functions, volume II Alpha and theta oscillations on a visual strategic processing task in age-related hearing loss Blocking Aδ- and C-fiber neural transmission by sub-kilohertz peripheral nerve stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1