GPU 并行处理,可在状态估计中进行广泛的临界分析

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Concurrency and Computation-Practice & Experience Pub Date : 2024-06-11 DOI:10.1002/cpe.8200
Ayres Nishio, Milton B. Do Coutto Filho, Julio C. Stachinni de Souza, Esteban W. G. Clua
{"title":"GPU 并行处理,可在状态估计中进行广泛的临界分析","authors":"Ayres Nishio,&nbsp;Milton B. Do Coutto Filho,&nbsp;Julio C. Stachinni de Souza,&nbsp;Esteban W. G. Clua","doi":"10.1002/cpe.8200","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Power system monitoring relies on the reliability of state estimation (SE) results. SE plays a dominant role in data debugging if sufficient data is available. Criticality analysis (CA) integrates SE as a module in which measurements—taken one-by-one or in groups (tuples) of minimal cardinality—are designated crucial. The combinatorial nature of extensive CA (not restricted to identifying low-cardinality critical tuples) characterizes its computational complexity and imposes challenging limits to go beyond. In simple terms, these limits are established by the number of measurements to be combined, the cardinality of tuples, and the computing time required to check the criticality condition. This paper proposes an innovative computational solution to expand CA limits found to date in the literature. A framework with multi-threads designed cleverly on a graphics processing unit (GPU) parallel processing environment is built. The conceived architecture favors evaluating massive measurement combinations of diverse cardinality in extensive CA. Numerical results reveal significant speed-ups with the proposed approach, contrasting with those reported in research efforts published so far.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 20","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU parallel processing to enable extensive criticality analysis in state estimation\",\"authors\":\"Ayres Nishio,&nbsp;Milton B. Do Coutto Filho,&nbsp;Julio C. Stachinni de Souza,&nbsp;Esteban W. G. Clua\",\"doi\":\"10.1002/cpe.8200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Power system monitoring relies on the reliability of state estimation (SE) results. SE plays a dominant role in data debugging if sufficient data is available. Criticality analysis (CA) integrates SE as a module in which measurements—taken one-by-one or in groups (tuples) of minimal cardinality—are designated crucial. The combinatorial nature of extensive CA (not restricted to identifying low-cardinality critical tuples) characterizes its computational complexity and imposes challenging limits to go beyond. In simple terms, these limits are established by the number of measurements to be combined, the cardinality of tuples, and the computing time required to check the criticality condition. This paper proposes an innovative computational solution to expand CA limits found to date in the literature. A framework with multi-threads designed cleverly on a graphics processing unit (GPU) parallel processing environment is built. The conceived architecture favors evaluating massive measurement combinations of diverse cardinality in extensive CA. Numerical results reveal significant speed-ups with the proposed approach, contrasting with those reported in research efforts published so far.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"36 20\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8200\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8200","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

电力系统监控依赖于状态估计(SE)结果的可靠性。如果有足够的数据,SE 在数据调试中发挥着主导作用。临界值分析(CA)将 SE 作为一个模块进行整合,将逐个或以最小卡数分组(元组)的测量结果指定为临界值。广泛 CA 的组合性质(不局限于识别低卡位临界元组)决定了其计算复杂性,并提出了极具挑战性的限制。简单地说,这些限制是由需要组合的测量数量、元组的卡方性以及检查临界条件所需的计算时间决定的。本文提出了一种创新的计算解决方案,以扩大迄今为止在文献中发现的 CA 限制。本文在图形处理器(GPU)并行处理环境上巧妙地设计了一个具有多线程的框架。所构想的架构有利于在广泛的 CA 中评估不同心率的大量测量组合。数值结果表明,与迄今为止发表的研究成果相比,所提出的方法大大提高了速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU parallel processing to enable extensive criticality analysis in state estimation

Power system monitoring relies on the reliability of state estimation (SE) results. SE plays a dominant role in data debugging if sufficient data is available. Criticality analysis (CA) integrates SE as a module in which measurements—taken one-by-one or in groups (tuples) of minimal cardinality—are designated crucial. The combinatorial nature of extensive CA (not restricted to identifying low-cardinality critical tuples) characterizes its computational complexity and imposes challenging limits to go beyond. In simple terms, these limits are established by the number of measurements to be combined, the cardinality of tuples, and the computing time required to check the criticality condition. This paper proposes an innovative computational solution to expand CA limits found to date in the literature. A framework with multi-threads designed cleverly on a graphics processing unit (GPU) parallel processing environment is built. The conceived architecture favors evaluating massive measurement combinations of diverse cardinality in extensive CA. Numerical results reveal significant speed-ups with the proposed approach, contrasting with those reported in research efforts published so far.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
期刊最新文献
Issue Information Improving QoS in cloud resources scheduling using dynamic clustering algorithm and SM-CDC scheduling model Issue Information Issue Information Camellia oleifera trunks detection and identification based on improved YOLOv7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1