Gurvinder Kaur, Sheza Farooq, Yashpal S. Malik, Simrinder Singh Sodhi, R. S. Sethi
{"title":"通过线粒体产生的 ROS 评估慢性接触氟虫腈和吡虫啉对肺造成的损害","authors":"Gurvinder Kaur, Sheza Farooq, Yashpal S. Malik, Simrinder Singh Sodhi, R. S. Sethi","doi":"10.1007/s40003-024-00738-2","DOIUrl":null,"url":null,"abstract":"<div><p>Fipronil and imidacloprid are commonly used formulae in veterinary and agricultural sector. There are a few reports on their toxicological impact on the non-target life forms leading to serious respiratory and other health risks. Reactive oxygen species (ROS) are linked with cellular toxicity or damage in number of disease anomalies. Though previous studies report their effects on lungs, information on the molecular mechanism of lung injury following exposure to mixture of fipronil and imidacloprid is limited. Hence, in this study the molecular mechanism behind fipronil and imidacloprid induced lung toxicity was explored. In the animal experimental work, Swiss albino mice aged (6–8 weeks) were orally administered with high (0.91 mg/kg i.e., 1/100th of LD<sub>50</sub>) and low (0.60 mg/kg i.e., 1/150th of LD<sub>50</sub>) doses of fipronil and imidacloprid (high-1.31 mg/kg and low- 0.87 mg/kg) individually and in combination for 90 consecutive days to identify the association of lung damage with mitochondrial ROS (mtROS) formation. Blood and bronchoalveolar lavage fluid (BALF) were collected for total leukocyte count (TLC) and differential leukocyte count (DLC) analysis. Lung samples were processed for histopathological examination and mtROS measurement. TLC, DLC scores and histopathological examination suggested lung inflammation. There was statistically significant increase (<i>P</i> < 0.05) in mtROS in lungs treated with imidacloprid and in combination with fipronil at low doses compared to the control group suggesting the induction of oxidative stress. The findings suggest that mtROS is associated with insecticide induced lung damage and necessitates in-depth studies on other host species exposed to such insecticides in field conditions.</p></div>","PeriodicalId":7553,"journal":{"name":"Agricultural Research","volume":"13 4","pages":"755 - 762"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Lung Damage via Mitochondrial ROS Production Upon Chronic Exposure to Fipronil and Imidacloprid\",\"authors\":\"Gurvinder Kaur, Sheza Farooq, Yashpal S. Malik, Simrinder Singh Sodhi, R. S. Sethi\",\"doi\":\"10.1007/s40003-024-00738-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fipronil and imidacloprid are commonly used formulae in veterinary and agricultural sector. There are a few reports on their toxicological impact on the non-target life forms leading to serious respiratory and other health risks. Reactive oxygen species (ROS) are linked with cellular toxicity or damage in number of disease anomalies. Though previous studies report their effects on lungs, information on the molecular mechanism of lung injury following exposure to mixture of fipronil and imidacloprid is limited. Hence, in this study the molecular mechanism behind fipronil and imidacloprid induced lung toxicity was explored. In the animal experimental work, Swiss albino mice aged (6–8 weeks) were orally administered with high (0.91 mg/kg i.e., 1/100th of LD<sub>50</sub>) and low (0.60 mg/kg i.e., 1/150th of LD<sub>50</sub>) doses of fipronil and imidacloprid (high-1.31 mg/kg and low- 0.87 mg/kg) individually and in combination for 90 consecutive days to identify the association of lung damage with mitochondrial ROS (mtROS) formation. Blood and bronchoalveolar lavage fluid (BALF) were collected for total leukocyte count (TLC) and differential leukocyte count (DLC) analysis. Lung samples were processed for histopathological examination and mtROS measurement. TLC, DLC scores and histopathological examination suggested lung inflammation. There was statistically significant increase (<i>P</i> < 0.05) in mtROS in lungs treated with imidacloprid and in combination with fipronil at low doses compared to the control group suggesting the induction of oxidative stress. The findings suggest that mtROS is associated with insecticide induced lung damage and necessitates in-depth studies on other host species exposed to such insecticides in field conditions.</p></div>\",\"PeriodicalId\":7553,\"journal\":{\"name\":\"Agricultural Research\",\"volume\":\"13 4\",\"pages\":\"755 - 762\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40003-024-00738-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40003-024-00738-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Assessment of Lung Damage via Mitochondrial ROS Production Upon Chronic Exposure to Fipronil and Imidacloprid
Fipronil and imidacloprid are commonly used formulae in veterinary and agricultural sector. There are a few reports on their toxicological impact on the non-target life forms leading to serious respiratory and other health risks. Reactive oxygen species (ROS) are linked with cellular toxicity or damage in number of disease anomalies. Though previous studies report their effects on lungs, information on the molecular mechanism of lung injury following exposure to mixture of fipronil and imidacloprid is limited. Hence, in this study the molecular mechanism behind fipronil and imidacloprid induced lung toxicity was explored. In the animal experimental work, Swiss albino mice aged (6–8 weeks) were orally administered with high (0.91 mg/kg i.e., 1/100th of LD50) and low (0.60 mg/kg i.e., 1/150th of LD50) doses of fipronil and imidacloprid (high-1.31 mg/kg and low- 0.87 mg/kg) individually and in combination for 90 consecutive days to identify the association of lung damage with mitochondrial ROS (mtROS) formation. Blood and bronchoalveolar lavage fluid (BALF) were collected for total leukocyte count (TLC) and differential leukocyte count (DLC) analysis. Lung samples were processed for histopathological examination and mtROS measurement. TLC, DLC scores and histopathological examination suggested lung inflammation. There was statistically significant increase (P < 0.05) in mtROS in lungs treated with imidacloprid and in combination with fipronil at low doses compared to the control group suggesting the induction of oxidative stress. The findings suggest that mtROS is associated with insecticide induced lung damage and necessitates in-depth studies on other host species exposed to such insecticides in field conditions.
期刊介绍:
The main objective of this initiative is to promote agricultural research and development. The journal will publish high quality original research papers and critical reviews on emerging fields and concepts for providing future directions. The publications will include both applied and basic research covering the following disciplines of agricultural sciences: Genetic resources, genetics and breeding, biotechnology, physiology, biochemistry, management of biotic and abiotic stresses, and nutrition of field crops, horticultural crops, livestock and fishes; agricultural meteorology, environmental sciences, forestry and agro forestry, agronomy, soils and soil management, microbiology, water management, agricultural engineering and technology, agricultural policy, agricultural economics, food nutrition, agricultural statistics, and extension research; impact of climate change and the emerging technologies on agriculture, and the role of agricultural research and innovation for development.