旋翼机在使用高级控制器方面的特殊性

Q2 Engineering INCAS Bulletin Pub Date : 2024-06-10 DOI:10.13111/2066-8201.2024.16.2.7
Marilena D. Pavel
{"title":"旋翼机在使用高级控制器方面的特殊性","authors":"Marilena D. Pavel","doi":"10.13111/2066-8201.2024.16.2.7","DOIUrl":null,"url":null,"abstract":"Advanced nonlinear controllers are a desirable solution to rotorcraft flight control as they can solve the system high nonlinear dynamic behavior. However, conventional nonlinear controllers such as Nonlinear Dynamic Inversion (NDI) controller heavily rely on the availability of accurate model knowledge and this can be problematic for rotorcraft. Therefore, incremental control theory can solve the modelling errors sensitivity by relying on the information obtained from the sensors instead. The paper applied the Incremental Nonlinear Dynamic Inversion (INDI) controller to rotorcraft case. It will be demonstrated that, for rotorcraft, the incremental nonlinear controllers depend on the delays introduced in the controller by the rotor dynamics. To correct this behaviour, residualization and synchronization methods need to be applied accordingly in order to remove the effects of rotor flapping (disctilt) dynamics from the controller. These particularities of rotorcraft in dealing with advanced controllers shows that incremental nonlinear controllers can have relatively small stability robustness margin and careful controller design is needed in order to account properly for rotorcraft time delays and unmodelled dynamics.","PeriodicalId":37556,"journal":{"name":"INCAS Bulletin","volume":"103 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particularities of Rotorcraft in Dealing with Advanced Controllers\",\"authors\":\"Marilena D. Pavel\",\"doi\":\"10.13111/2066-8201.2024.16.2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced nonlinear controllers are a desirable solution to rotorcraft flight control as they can solve the system high nonlinear dynamic behavior. However, conventional nonlinear controllers such as Nonlinear Dynamic Inversion (NDI) controller heavily rely on the availability of accurate model knowledge and this can be problematic for rotorcraft. Therefore, incremental control theory can solve the modelling errors sensitivity by relying on the information obtained from the sensors instead. The paper applied the Incremental Nonlinear Dynamic Inversion (INDI) controller to rotorcraft case. It will be demonstrated that, for rotorcraft, the incremental nonlinear controllers depend on the delays introduced in the controller by the rotor dynamics. To correct this behaviour, residualization and synchronization methods need to be applied accordingly in order to remove the effects of rotor flapping (disctilt) dynamics from the controller. These particularities of rotorcraft in dealing with advanced controllers shows that incremental nonlinear controllers can have relatively small stability robustness margin and careful controller design is needed in order to account properly for rotorcraft time delays and unmodelled dynamics.\",\"PeriodicalId\":37556,\"journal\":{\"name\":\"INCAS Bulletin\",\"volume\":\"103 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INCAS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13111/2066-8201.2024.16.2.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INCAS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13111/2066-8201.2024.16.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

先进的非线性控制器是旋翼机飞行控制的理想解决方案,因为它们可以解决系统的高非线性动态行为。然而,传统的非线性控制器(如非线性动态反演(NDI)控制器)在很大程度上依赖于精确的模型知识,这对于旋翼机来说可能存在问题。因此,增量控制理论可以依靠从传感器获得的信息来解决建模误差敏感性问题。本文将增量非线性动态反演(INDI)控制器应用于旋翼机。结果表明,对于旋翼机而言,增量非线性控制器取决于转子动力学在控制器中引入的延迟。为了纠正这种行为,需要相应地应用残差和同步方法,以消除控制器中转子拍打(disctilt)动力学的影响。旋翼机在处理高级控制器时的这些特殊性表明,增量非线性控制器的稳定性鲁棒性裕度可能相对较小,因此需要精心设计控制器,以适当考虑旋翼机的时间延迟和未模拟的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particularities of Rotorcraft in Dealing with Advanced Controllers
Advanced nonlinear controllers are a desirable solution to rotorcraft flight control as they can solve the system high nonlinear dynamic behavior. However, conventional nonlinear controllers such as Nonlinear Dynamic Inversion (NDI) controller heavily rely on the availability of accurate model knowledge and this can be problematic for rotorcraft. Therefore, incremental control theory can solve the modelling errors sensitivity by relying on the information obtained from the sensors instead. The paper applied the Incremental Nonlinear Dynamic Inversion (INDI) controller to rotorcraft case. It will be demonstrated that, for rotorcraft, the incremental nonlinear controllers depend on the delays introduced in the controller by the rotor dynamics. To correct this behaviour, residualization and synchronization methods need to be applied accordingly in order to remove the effects of rotor flapping (disctilt) dynamics from the controller. These particularities of rotorcraft in dealing with advanced controllers shows that incremental nonlinear controllers can have relatively small stability robustness margin and careful controller design is needed in order to account properly for rotorcraft time delays and unmodelled dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INCAS Bulletin
INCAS Bulletin Engineering-Aerospace Engineering
自引率
0.00%
发文量
50
审稿时长
8 weeks
期刊介绍: INCAS BULLETIN is a scientific quartely journal published by INCAS – National Institute for Aerospace Research “Elie Carafoli” (under the aegis of The Romanian Academy) Its current focus is the aerospace field, covering fluid mechanics, aerodynamics, flight theory, aeroelasticity, structures, applied control, mechatronics, experimental aerodynamics, computational methods. All submitted papers are peer-reviewed. The journal will publish reports and short research original papers of substance. Unique features distinguishing this journal: R & D reports in aerospace sciences in Romania The INCAS BULLETIN of the National Institute for Aerospace Research "Elie Carafoli" includes the following sections: 1) FULL PAPERS. -Strength of materials, elasticity, plasticity, aeroelasticity, static and dynamic analysis of structures, vibrations and impact. -Systems, mechatronics and control in aerospace. -Materials and tribology. -Kinematics and dynamics of mechanisms, friction, lubrication. -Measurement technique. -Aeroacoustics, ventilation, wind motors. -Management in Aerospace Activities. 2) TECHNICAL-SCIENTIFIC NOTES and REPORTS. Includes: case studies, technical-scientific notes and reports on published areas. 3) INCAS NEWS. Promote and emphasise INCAS technical base and achievements. 4) BOOK REVIEWS.
期刊最新文献
Quadcopter-Rover System for Environmental Survey Applications Particularities of Rotorcraft in Dealing with Advanced Controllers Relationship between mechanical behavior and process factors in friction stir welding aluminum alloys Extending structural optimization capabilities of FEA softs according to machine learning principles Analyzes regarding aviation fuels parameters use on jet engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1