回顾--用于缓解锂离子电池火灾的阻燃剂的最新进展

Fiza Majeed, Hasan Jamal, Urooj Kamran, Muhammad Noman, Muqaddas Muhammad Ali, Tahreem Shahzad, Mirza Mahmood Baig, Farid Akhtar
{"title":"回顾--用于缓解锂离子电池火灾的阻燃剂的最新进展","authors":"Fiza Majeed, Hasan Jamal, Urooj Kamran, Muhammad Noman, Muqaddas Muhammad Ali, Tahreem Shahzad, Mirza Mahmood Baig, Farid Akhtar","doi":"10.1149/1945-7111/ad5620","DOIUrl":null,"url":null,"abstract":"\n The rising energy density and widespread use of lithium-ion batteries (LIBs) pose a growing safety challenge, marked by the potential for fires and explosions. Given the unique combustion characteristics of LIBs, the need for efficient and prompt fire suppression is paramount. Here we explore the mechanisms and characteristics of LIBs fires, emphasizing the critical design principles for effective fire-extinguishing agents and evaluating various agents, including gaseous, dry powders, water-based, aerosol-based, and composite-based fire-extinguishing agents, elucidating their mechanisms and effectiveness in suppressing LIBs fires. Noteworthy agents such as C6F12O and water-based solutions are highlighted for their superior extinguishing and cooling capabilities. Water-based fire-extinguishing agents show promise, exhibiting superior cooling capacity and anti-flash properties. Despite certain limitations, the review underscores the necessity of identifying an ideal fire-extinguishing agent that is thermally conductive, electrically insulating, cost-effective, non-toxic, residue-free, and capable of absorbing toxic gases. We conclude by discussing perspectives and outlooks, emphasizing the synergy between the ideal agent and innovative extinguishing strategies to ensure the high safety standards of current and future LIB-based technologies.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":"106 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review—Recent Advances in Fire-Suppressing Agents for Mitigating Lithium-Ion Battery Fires\",\"authors\":\"Fiza Majeed, Hasan Jamal, Urooj Kamran, Muhammad Noman, Muqaddas Muhammad Ali, Tahreem Shahzad, Mirza Mahmood Baig, Farid Akhtar\",\"doi\":\"10.1149/1945-7111/ad5620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The rising energy density and widespread use of lithium-ion batteries (LIBs) pose a growing safety challenge, marked by the potential for fires and explosions. Given the unique combustion characteristics of LIBs, the need for efficient and prompt fire suppression is paramount. Here we explore the mechanisms and characteristics of LIBs fires, emphasizing the critical design principles for effective fire-extinguishing agents and evaluating various agents, including gaseous, dry powders, water-based, aerosol-based, and composite-based fire-extinguishing agents, elucidating their mechanisms and effectiveness in suppressing LIBs fires. Noteworthy agents such as C6F12O and water-based solutions are highlighted for their superior extinguishing and cooling capabilities. Water-based fire-extinguishing agents show promise, exhibiting superior cooling capacity and anti-flash properties. Despite certain limitations, the review underscores the necessity of identifying an ideal fire-extinguishing agent that is thermally conductive, electrically insulating, cost-effective, non-toxic, residue-free, and capable of absorbing toxic gases. We conclude by discussing perspectives and outlooks, emphasizing the synergy between the ideal agent and innovative extinguishing strategies to ensure the high safety standards of current and future LIB-based technologies.\",\"PeriodicalId\":509718,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"106 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad5620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad5620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着锂离子电池(LIB)能量密度的不断提高和广泛使用,其潜在的火灾和爆炸风险给安全带来了越来越大的挑战。鉴于锂离子电池独特的燃烧特性,高效、及时地灭火至关重要。在此,我们探讨了锂离子电池火灾的机理和特征,强调了有效灭火剂的关键设计原则,并评估了各种灭火剂,包括气态、干粉、水基、气溶胶基和复合基灭火剂,阐明了它们抑制锂离子电池火灾的机理和有效性。重点介绍了 C6F12O 和水基溶液等值得注意的灭火剂,它们具有卓越的灭火和冷却能力。水基灭火剂表现出卓越的冷却能力和防闪烁特性,前景广阔。尽管存在某些局限性,但本综述强调有必要找到一种理想的灭火剂,这种灭火剂应具有导热性、电绝缘性、成本效益高、无毒、无残留并能吸收有毒气体。最后,我们讨论了前景和展望,强调了理想灭火剂与创新灭火策略之间的协同作用,以确保当前和未来基于 LIB 技术的高安全标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review—Recent Advances in Fire-Suppressing Agents for Mitigating Lithium-Ion Battery Fires
The rising energy density and widespread use of lithium-ion batteries (LIBs) pose a growing safety challenge, marked by the potential for fires and explosions. Given the unique combustion characteristics of LIBs, the need for efficient and prompt fire suppression is paramount. Here we explore the mechanisms and characteristics of LIBs fires, emphasizing the critical design principles for effective fire-extinguishing agents and evaluating various agents, including gaseous, dry powders, water-based, aerosol-based, and composite-based fire-extinguishing agents, elucidating their mechanisms and effectiveness in suppressing LIBs fires. Noteworthy agents such as C6F12O and water-based solutions are highlighted for their superior extinguishing and cooling capabilities. Water-based fire-extinguishing agents show promise, exhibiting superior cooling capacity and anti-flash properties. Despite certain limitations, the review underscores the necessity of identifying an ideal fire-extinguishing agent that is thermally conductive, electrically insulating, cost-effective, non-toxic, residue-free, and capable of absorbing toxic gases. We conclude by discussing perspectives and outlooks, emphasizing the synergy between the ideal agent and innovative extinguishing strategies to ensure the high safety standards of current and future LIB-based technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing Cold Sintering to Fabricate Composite Polymer Electrolytes - A Paradigm Shift in Organic-Inorganic Material Assembly Investigating Plastic Deformation Between Silicon and Solid Electrolyte in All-Solid-State Batteries Using Operando X-ray Tomography Mild and Fast Chemical Presodiation of Na0.44MnO2 Facile Synthesis of U2Ti Intermetallic by Direct Electrochemical Reduction of UO2-TiO2 Composite in LiCl-Li2O Melt Binderless Electrodeposited NiCo2S4-MWCNT as a Potential Anode Material for Sodium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1