基于自监督预训练的屋顶线框重构方法

Hongxin Yang, Shangfeng Huang, Ruisheng Wang
{"title":"基于自监督预训练的屋顶线框重构方法","authors":"Hongxin Yang, Shangfeng Huang, Ruisheng Wang","doi":"10.5194/isprs-annals-x-2-2024-239-2024","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper, we present a two-stage method for roof wireframe reconstruction employing a self-supervised pretraining technique. The initial stage utilizes a multi-scale mask autoencoder to generate point-wise features. The subsequent stage involves three steps for edge parameter regression. Firstly, the initial edge directions are generated under the guidance of edge point identification. The next step employs edge parameter regression and matching modules to extract the parameters (namely, direction vector and length) of edge representation from the obtained edge features. Finally, a specifically designed edge non-maximum suppression and an edge similarity loss function are employed to optimize the representation of the final wireframe models and eliminate redundant edges. Experimental results indicate that the pre-trained self-supervised model, enriched by the roof wireframe reconstruction task, demonstrates superior performance on both the publicly available Building3D dataset and its post-processed iterations, specifically the Dense dataset, outperforming even traditional methods.\n","PeriodicalId":508124,"journal":{"name":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"119 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Roof Wireframe Reconstruction Based on Self-Supervised Pretraining\",\"authors\":\"Hongxin Yang, Shangfeng Huang, Ruisheng Wang\",\"doi\":\"10.5194/isprs-annals-x-2-2024-239-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this paper, we present a two-stage method for roof wireframe reconstruction employing a self-supervised pretraining technique. The initial stage utilizes a multi-scale mask autoencoder to generate point-wise features. The subsequent stage involves three steps for edge parameter regression. Firstly, the initial edge directions are generated under the guidance of edge point identification. The next step employs edge parameter regression and matching modules to extract the parameters (namely, direction vector and length) of edge representation from the obtained edge features. Finally, a specifically designed edge non-maximum suppression and an edge similarity loss function are employed to optimize the representation of the final wireframe models and eliminate redundant edges. Experimental results indicate that the pre-trained self-supervised model, enriched by the roof wireframe reconstruction task, demonstrates superior performance on both the publicly available Building3D dataset and its post-processed iterations, specifically the Dense dataset, outperforming even traditional methods.\\n\",\"PeriodicalId\":508124,\"journal\":{\"name\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\"119 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-annals-x-2-2024-239-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-annals-x-2-2024-239-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文介绍了一种采用自监督预训练技术的两阶段屋顶线框重建方法。初始阶段利用多尺度掩码自动编码器生成点向特征。后续阶段包括三个边缘参数回归步骤。首先,在边缘点识别的指导下生成初始边缘方向。下一步是利用边缘参数回归和匹配模块,从获得的边缘特征中提取边缘表示参数(即方向向量和长度)。最后,采用专门设计的边缘非最大抑制和边缘相似性损失函数来优化最终线框模型的表示,并消除多余的边缘。实验结果表明,经过屋顶线框重建任务丰富的预训练自监督模型在公开的 Building3D 数据集及其后处理迭代数据集(特别是 Dense 数据集)上都表现出卓越的性能,甚至优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method for Roof Wireframe Reconstruction Based on Self-Supervised Pretraining
Abstract. In this paper, we present a two-stage method for roof wireframe reconstruction employing a self-supervised pretraining technique. The initial stage utilizes a multi-scale mask autoencoder to generate point-wise features. The subsequent stage involves three steps for edge parameter regression. Firstly, the initial edge directions are generated under the guidance of edge point identification. The next step employs edge parameter regression and matching modules to extract the parameters (namely, direction vector and length) of edge representation from the obtained edge features. Finally, a specifically designed edge non-maximum suppression and an edge similarity loss function are employed to optimize the representation of the final wireframe models and eliminate redundant edges. Experimental results indicate that the pre-trained self-supervised model, enriched by the roof wireframe reconstruction task, demonstrates superior performance on both the publicly available Building3D dataset and its post-processed iterations, specifically the Dense dataset, outperforming even traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Annals UAS Photogrammetry for Precise Digital Elevation Models of Complex Topography: A Strategy Guide Using Passive Multi-Modal Sensor Data for Thermal Simulation of Urban Surfaces Machine Learning Approaches for Vehicle Counting on Bridges Based on Global Ground-Based Radar Data Rectilinear Building Footprint Regularization Using Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1