甲氨蝶呤和赛拉司琼的生物仿生触发释放胶束制剂可控制小鼠胶原诱导的关节炎

BMEMat Pub Date : 2024-06-10 DOI:10.1002/bmm2.12104
He Ren, Zewen Wu, Jingxuan Li, Nan Zhang, Coo Yee Nah, Jiexin Li, Jingyu Zhang, Jonathan F. Lovell, Liyun Zhang, Yumiao Zhang
{"title":"甲氨蝶呤和赛拉司琼的生物仿生触发释放胶束制剂可控制小鼠胶原诱导的关节炎","authors":"He Ren, Zewen Wu, Jingxuan Li, Nan Zhang, Coo Yee Nah, Jiexin Li, Jingyu Zhang, Jonathan F. Lovell, Liyun Zhang, Yumiao Zhang","doi":"10.1002/bmm2.12104","DOIUrl":null,"url":null,"abstract":"Rheumatoid arthritis (RA) is a systemic autoimmune disease that leads to the destruction of articular cartilage and bone. RA is characterized by immune cell infiltration and abnormal proliferation of synoviocytes in the joints. Herein, we developed a biomimetic formulation via co‐loading the anti‐inflammatory agent Celastrol (Cel) along with the stabilizer Vitamin K (VK) in antirheumatic methotrexate (MTX)‐conjugated Pluronic F127 (F127) micelles. Micelles were then coated with B cell derived membrane, yielding MTX loaded Cel Micelle (CeViM)‐micelle@B, which were investigated for RA treatment. VK, used at levels well within safety margins, was identified as a carrier compound that could stabilize Cel within micelles, increasing the encapsulation efficiency of Cel. In addition, MTX, a front‐line RA therapeutic, was chemically grafted to F127 via a responsive linker sensitive to the chemically reducing environments. As such, CeViM‐micelle@B released pristine MTX in response to the intracellular reducing environments, which combined with Cel to suppress pro‐inflammatory responses. B cell membrane coating enhanced accumulation of CeViM‐micelle@B in joints, leading to a 75% decrease of inflammatory cytokine secretion in vitro, and significantly ameliorated cartilage and bone structures in the collagen‐induced arthritis murine model. Taken together, this biomimetic nanoparticle holds potential as a next‐generation targeted RA treatment.","PeriodicalId":503415,"journal":{"name":"BMEMat","volume":"119 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A biomimetic, triggered‐release micelle formulation of methotrexate and celastrol controls collagen‐induced arthritis in mice\",\"authors\":\"He Ren, Zewen Wu, Jingxuan Li, Nan Zhang, Coo Yee Nah, Jiexin Li, Jingyu Zhang, Jonathan F. Lovell, Liyun Zhang, Yumiao Zhang\",\"doi\":\"10.1002/bmm2.12104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rheumatoid arthritis (RA) is a systemic autoimmune disease that leads to the destruction of articular cartilage and bone. RA is characterized by immune cell infiltration and abnormal proliferation of synoviocytes in the joints. Herein, we developed a biomimetic formulation via co‐loading the anti‐inflammatory agent Celastrol (Cel) along with the stabilizer Vitamin K (VK) in antirheumatic methotrexate (MTX)‐conjugated Pluronic F127 (F127) micelles. Micelles were then coated with B cell derived membrane, yielding MTX loaded Cel Micelle (CeViM)‐micelle@B, which were investigated for RA treatment. VK, used at levels well within safety margins, was identified as a carrier compound that could stabilize Cel within micelles, increasing the encapsulation efficiency of Cel. In addition, MTX, a front‐line RA therapeutic, was chemically grafted to F127 via a responsive linker sensitive to the chemically reducing environments. As such, CeViM‐micelle@B released pristine MTX in response to the intracellular reducing environments, which combined with Cel to suppress pro‐inflammatory responses. B cell membrane coating enhanced accumulation of CeViM‐micelle@B in joints, leading to a 75% decrease of inflammatory cytokine secretion in vitro, and significantly ameliorated cartilage and bone structures in the collagen‐induced arthritis murine model. Taken together, this biomimetic nanoparticle holds potential as a next‐generation targeted RA treatment.\",\"PeriodicalId\":503415,\"journal\":{\"name\":\"BMEMat\",\"volume\":\"119 27\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMEMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/bmm2.12104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMEMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/bmm2.12104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

类风湿性关节炎(RA)是一种全身性自身免疫性疾病,会导致关节软骨和骨骼的破坏。类风湿性关节炎的特点是免疫细胞浸润和关节滑膜细胞异常增殖。在此,我们通过在抗风湿药物甲氨蝶呤(MTX)共轭聚钚F127(F127)胶束中共同添加抗炎剂塞拉斯托(Celastrol)和稳定剂维生素K(VK),开发了一种生物仿生制剂。然后在胶束上涂覆 B 细胞衍生膜,得到负载 MTX 的 Cel Micelle(CeViM)-micelle@B,并对其进行了 RA 治疗研究。在安全范围内使用的 VK 被确定为一种载体化合物,可将 Cel 稳定在胶束中,从而提高 Cel 的封装效率。此外,通过对化学还原环境敏感的反应性连接体,MTX(一种前线 RA 治疗药物)被化学接枝到 F127 上。因此,CeViM-micelle@B 在细胞内还原环境中释放出原始 MTX,与 Cel 共同抑制促炎反应。B细胞膜涂层增强了CeViM-micelle@B在关节中的积聚,使体外炎性细胞因子分泌减少了75%,并显著改善了胶原诱导的关节炎小鼠模型中的软骨和骨结构。综上所述,这种仿生纳米粒子有望成为下一代的RA靶向治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A biomimetic, triggered‐release micelle formulation of methotrexate and celastrol controls collagen‐induced arthritis in mice
Rheumatoid arthritis (RA) is a systemic autoimmune disease that leads to the destruction of articular cartilage and bone. RA is characterized by immune cell infiltration and abnormal proliferation of synoviocytes in the joints. Herein, we developed a biomimetic formulation via co‐loading the anti‐inflammatory agent Celastrol (Cel) along with the stabilizer Vitamin K (VK) in antirheumatic methotrexate (MTX)‐conjugated Pluronic F127 (F127) micelles. Micelles were then coated with B cell derived membrane, yielding MTX loaded Cel Micelle (CeViM)‐micelle@B, which were investigated for RA treatment. VK, used at levels well within safety margins, was identified as a carrier compound that could stabilize Cel within micelles, increasing the encapsulation efficiency of Cel. In addition, MTX, a front‐line RA therapeutic, was chemically grafted to F127 via a responsive linker sensitive to the chemically reducing environments. As such, CeViM‐micelle@B released pristine MTX in response to the intracellular reducing environments, which combined with Cel to suppress pro‐inflammatory responses. B cell membrane coating enhanced accumulation of CeViM‐micelle@B in joints, leading to a 75% decrease of inflammatory cytokine secretion in vitro, and significantly ameliorated cartilage and bone structures in the collagen‐induced arthritis murine model. Taken together, this biomimetic nanoparticle holds potential as a next‐generation targeted RA treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A biomimetic, triggered‐release micelle formulation of methotrexate and celastrol controls collagen‐induced arthritis in mice Hybrid coatings on dental and orthopedic titanium implants: Current advances and challenges Photothermal lanthanide nanomaterials: From fundamentals to theranostic applications Thickening tissue by thinning electrospun scaffolds for skeletal muscle tissue engineering A simple yet effective H2S‐activated fluorogenic probe for precise imaging of hepatitis and arthritis in situ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1