{"title":"基于改进的麻雀搜索算法的短期风电预测,优化了带窥视孔连接的长短期记忆","authors":"Fei Tang","doi":"10.1177/0309524x241257429","DOIUrl":null,"url":null,"abstract":"Accurate short-term wind power prediction is of great significance for the scheduling and management of wind farms. This paper proposes a model for short-term wind power prediction. Firstly, on the basis of traditional long short-term memory network, the peephole connections is added. The improved long short-term memory network is more stable compared to traditional long short-term memory neural networks and is suitable for regression prediction. Secondly, chaotic mapping, adaptive weights, Cauchy mutation, and opposition-based learning strategies are introduced to improve the sparrow search algorithm, and applied to optimize the four hyper-parameters of the long short-term memory network, greatly improving the prediction accuracy of the network. The effectiveness of the model is validated using two short-term wind power datasets with sampling times of 10 and 30 minutes respectively, combined with some fitting curves and performance indicators. The comparison results indicate that the proposed short-term wind power prediction model has high prediction accuracy.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term wind power prediction based on improved sparrow search algorithm optimized long short-term memory with peephole connections\",\"authors\":\"Fei Tang\",\"doi\":\"10.1177/0309524x241257429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate short-term wind power prediction is of great significance for the scheduling and management of wind farms. This paper proposes a model for short-term wind power prediction. Firstly, on the basis of traditional long short-term memory network, the peephole connections is added. The improved long short-term memory network is more stable compared to traditional long short-term memory neural networks and is suitable for regression prediction. Secondly, chaotic mapping, adaptive weights, Cauchy mutation, and opposition-based learning strategies are introduced to improve the sparrow search algorithm, and applied to optimize the four hyper-parameters of the long short-term memory network, greatly improving the prediction accuracy of the network. The effectiveness of the model is validated using two short-term wind power datasets with sampling times of 10 and 30 minutes respectively, combined with some fitting curves and performance indicators. The comparison results indicate that the proposed short-term wind power prediction model has high prediction accuracy.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524x241257429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x241257429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Short-term wind power prediction based on improved sparrow search algorithm optimized long short-term memory with peephole connections
Accurate short-term wind power prediction is of great significance for the scheduling and management of wind farms. This paper proposes a model for short-term wind power prediction. Firstly, on the basis of traditional long short-term memory network, the peephole connections is added. The improved long short-term memory network is more stable compared to traditional long short-term memory neural networks and is suitable for regression prediction. Secondly, chaotic mapping, adaptive weights, Cauchy mutation, and opposition-based learning strategies are introduced to improve the sparrow search algorithm, and applied to optimize the four hyper-parameters of the long short-term memory network, greatly improving the prediction accuracy of the network. The effectiveness of the model is validated using two short-term wind power datasets with sampling times of 10 and 30 minutes respectively, combined with some fitting curves and performance indicators. The comparison results indicate that the proposed short-term wind power prediction model has high prediction accuracy.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.