GLC_FCS30D 的算法、进展、数据集和验证:1985-2022 年首个具有精细分类系统的全球 30 米土地覆盖动态产品

Liangyun Liu, Xiao Zhang
{"title":"GLC_FCS30D 的算法、进展、数据集和验证:1985-2022 年首个具有精细分类系统的全球 30 米土地覆盖动态产品","authors":"Liangyun Liu, Xiao Zhang","doi":"10.5194/isprs-annals-x-2-2024-137-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Land cover change information plays an indispensable role in environmental monitoring, climate change research, agricultural planning, urban development, biodiversity conservation, and natural disaster risk assessment. Recently, the free access of Landsat imagery and improvement of computation capacity especially supported by Google Earth Engine platform provides great chance in time-series land-cover change monitoring. We used the stratified land-cover monitoring strategy and time-series Landsat imagery to develop a novel global 30 m land-cover dynamic product with fine classification system from 1985 to 2022 (GLC_FCS30D). Firstly, we used the multitemporal classification to generate the time-series impervious surfaces, wetlands and tidal flat products. Then, we proposed to combine the continuous change detection algorithm and local adaptive updating model to capture the land-cover changes, and to generate a new global 30 m land-cover dynamic product (impervious surfaces, wetlands and tidal flat types were excluded in this step). Next, after overlapping the three multitemporal classification products and the time-series dynamical land-cover dataset, the novel GLC_FCS30D was developed, which contained 35 fine land-cover types. Lastly, using the global 84526 validation points in 2020, the GLC_FCS30D was validated to show the great performance with an overall accuracy of 80.88%, and had obvious advantages over other global land-cover products in diversity of land-cover types and mapping accuracy.\n","PeriodicalId":508124,"journal":{"name":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm, Progresses, Datasets and Validation of GLC_FCS30D: the first global 30 m land-cover dynamic product with fine classification system from 1985 to 2022\",\"authors\":\"Liangyun Liu, Xiao Zhang\",\"doi\":\"10.5194/isprs-annals-x-2-2024-137-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Land cover change information plays an indispensable role in environmental monitoring, climate change research, agricultural planning, urban development, biodiversity conservation, and natural disaster risk assessment. Recently, the free access of Landsat imagery and improvement of computation capacity especially supported by Google Earth Engine platform provides great chance in time-series land-cover change monitoring. We used the stratified land-cover monitoring strategy and time-series Landsat imagery to develop a novel global 30 m land-cover dynamic product with fine classification system from 1985 to 2022 (GLC_FCS30D). Firstly, we used the multitemporal classification to generate the time-series impervious surfaces, wetlands and tidal flat products. Then, we proposed to combine the continuous change detection algorithm and local adaptive updating model to capture the land-cover changes, and to generate a new global 30 m land-cover dynamic product (impervious surfaces, wetlands and tidal flat types were excluded in this step). Next, after overlapping the three multitemporal classification products and the time-series dynamical land-cover dataset, the novel GLC_FCS30D was developed, which contained 35 fine land-cover types. Lastly, using the global 84526 validation points in 2020, the GLC_FCS30D was validated to show the great performance with an overall accuracy of 80.88%, and had obvious advantages over other global land-cover products in diversity of land-cover types and mapping accuracy.\\n\",\"PeriodicalId\":508124,\"journal\":{\"name\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\" 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-annals-x-2-2024-137-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-annals-x-2-2024-137-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要土地覆被变化信息在环境监测、气候变化研究、农业规划、城市发展、生物多样性保护和自然灾害风险评估中发挥着不可或缺的作用。近年来,在谷歌地球引擎平台的支持下,陆地卫星图像的免费获取和计算能力的提高为时间序列土地覆被变化监测提供了巨大的机遇。我们利用分层土地覆被监测策略和时间序列大地遥感卫星图像,开发了一种新型的具有精细分类系统的全球 30 米土地覆被动态产品(GLC_FCS30D),该产品从 1985 年至 2022 年。首先,我们利用多时分类生成了不透水地表、湿地和滩涂的时间序列产品。然后,我们提出结合连续变化检测算法和局部自适应更新模型来捕捉土地覆被变化,并生成新的全球 30 米土地覆被动态产品(此步骤不包括不透水表面、湿地和滩涂类型)。接下来,在将三个多时相分类产品和时间序列动态土地覆被数据集重叠后,开发出新的 GLC_FCS30D,其中包含 35 种精细土地覆被类型。最后,利用 2020 年全球 84526 个验证点对 GLC_FCS30D 进行了验证,结果表明 GLC_FCS30D 性能优异,总体精度达到 80.88%,与其他全球土地覆被产品相比,在土地覆被类型多样性和绘图精度方面具有明显优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithm, Progresses, Datasets and Validation of GLC_FCS30D: the first global 30 m land-cover dynamic product with fine classification system from 1985 to 2022
Abstract. Land cover change information plays an indispensable role in environmental monitoring, climate change research, agricultural planning, urban development, biodiversity conservation, and natural disaster risk assessment. Recently, the free access of Landsat imagery and improvement of computation capacity especially supported by Google Earth Engine platform provides great chance in time-series land-cover change monitoring. We used the stratified land-cover monitoring strategy and time-series Landsat imagery to develop a novel global 30 m land-cover dynamic product with fine classification system from 1985 to 2022 (GLC_FCS30D). Firstly, we used the multitemporal classification to generate the time-series impervious surfaces, wetlands and tidal flat products. Then, we proposed to combine the continuous change detection algorithm and local adaptive updating model to capture the land-cover changes, and to generate a new global 30 m land-cover dynamic product (impervious surfaces, wetlands and tidal flat types were excluded in this step). Next, after overlapping the three multitemporal classification products and the time-series dynamical land-cover dataset, the novel GLC_FCS30D was developed, which contained 35 fine land-cover types. Lastly, using the global 84526 validation points in 2020, the GLC_FCS30D was validated to show the great performance with an overall accuracy of 80.88%, and had obvious advantages over other global land-cover products in diversity of land-cover types and mapping accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Annals UAS Photogrammetry for Precise Digital Elevation Models of Complex Topography: A Strategy Guide Using Passive Multi-Modal Sensor Data for Thermal Simulation of Urban Surfaces Machine Learning Approaches for Vehicle Counting on Bridges Based on Global Ground-Based Radar Data Rectilinear Building Footprint Regularization Using Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1