Marek Graff, Sawomir Ostrowski, Jan Cz. Dobrowolski
{"title":"1,n-homodisubstituted polyenes 中的取代基效应","authors":"Marek Graff, Sawomir Ostrowski, Jan Cz. Dobrowolski","doi":"10.1007/s11224-024-02349-7","DOIUrl":null,"url":null,"abstract":"<div><p>The all-<i>trans</i> and all-<i>cis</i> polyenes homodisubstituted at the ends were calculated at the B3LYP/6-31G** level. The disubstitution gives rise to three end-types of the conformers: <i>trans-trans</i>, <i>trans-cis</i>, and <i>cis-cis</i>, denoted as <i>EE</i>, <i>EZ</i>, and <i>ZZ</i>. The symmetry of the <i>EE</i> or <i>ZZ</i> all-<i>cis</i> isomers depended on the double bond parity. Twelve substituents used: H, BeH, BH<sub>2</sub>, BF<sub>2</sub>, Br, CH<sub>3</sub>, Cl, CN, F, NH<sub>2</sub>, NO<sub>2</sub>, OH, and SiH<sub>3</sub> were chosen to exhibit different σ- and π-electron donating and electron withdrawing properties. For polyenes composed up to ca. 20 C-atoms, the π-electron donating and withdrawing character of the end groups matters and differently acting substituents play significantly different roles. Unexpectedly, the intramolecular interactions between the substituents and the neighboring chain CH groups near appeared more decisive for the compound’s stability than the substituent electron donating/withdrawing properties. The substituent-chain interplay was consonant in the all-<i>trans</i> and all-<i>cis</i> polyenes. Still, they were always more destabilizing in the latter than in all-<i>trans</i> isomers.</p></div>","PeriodicalId":780,"journal":{"name":"Structural Chemistry","volume":"35 6","pages":"2033 - 2044"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11224-024-02349-7.pdf","citationCount":"0","resultStr":"{\"title\":\"On substituent effect in 1,n–homodisubstituted polyenes\",\"authors\":\"Marek Graff, Sawomir Ostrowski, Jan Cz. Dobrowolski\",\"doi\":\"10.1007/s11224-024-02349-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The all-<i>trans</i> and all-<i>cis</i> polyenes homodisubstituted at the ends were calculated at the B3LYP/6-31G** level. The disubstitution gives rise to three end-types of the conformers: <i>trans-trans</i>, <i>trans-cis</i>, and <i>cis-cis</i>, denoted as <i>EE</i>, <i>EZ</i>, and <i>ZZ</i>. The symmetry of the <i>EE</i> or <i>ZZ</i> all-<i>cis</i> isomers depended on the double bond parity. Twelve substituents used: H, BeH, BH<sub>2</sub>, BF<sub>2</sub>, Br, CH<sub>3</sub>, Cl, CN, F, NH<sub>2</sub>, NO<sub>2</sub>, OH, and SiH<sub>3</sub> were chosen to exhibit different σ- and π-electron donating and electron withdrawing properties. For polyenes composed up to ca. 20 C-atoms, the π-electron donating and withdrawing character of the end groups matters and differently acting substituents play significantly different roles. Unexpectedly, the intramolecular interactions between the substituents and the neighboring chain CH groups near appeared more decisive for the compound’s stability than the substituent electron donating/withdrawing properties. The substituent-chain interplay was consonant in the all-<i>trans</i> and all-<i>cis</i> polyenes. Still, they were always more destabilizing in the latter than in all-<i>trans</i> isomers.</p></div>\",\"PeriodicalId\":780,\"journal\":{\"name\":\"Structural Chemistry\",\"volume\":\"35 6\",\"pages\":\"2033 - 2044\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11224-024-02349-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11224-024-02349-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11224-024-02349-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On substituent effect in 1,n–homodisubstituted polyenes
The all-trans and all-cis polyenes homodisubstituted at the ends were calculated at the B3LYP/6-31G** level. The disubstitution gives rise to three end-types of the conformers: trans-trans, trans-cis, and cis-cis, denoted as EE, EZ, and ZZ. The symmetry of the EE or ZZ all-cis isomers depended on the double bond parity. Twelve substituents used: H, BeH, BH2, BF2, Br, CH3, Cl, CN, F, NH2, NO2, OH, and SiH3 were chosen to exhibit different σ- and π-electron donating and electron withdrawing properties. For polyenes composed up to ca. 20 C-atoms, the π-electron donating and withdrawing character of the end groups matters and differently acting substituents play significantly different roles. Unexpectedly, the intramolecular interactions between the substituents and the neighboring chain CH groups near appeared more decisive for the compound’s stability than the substituent electron donating/withdrawing properties. The substituent-chain interplay was consonant in the all-trans and all-cis polyenes. Still, they were always more destabilizing in the latter than in all-trans isomers.
期刊介绍:
Structural Chemistry is an international forum for the publication of peer-reviewed original research papers that cover the condensed and gaseous states of matter and involve numerous techniques for the determination of structure and energetics, their results, and the conclusions derived from these studies. The journal overcomes the unnatural separation in the current literature among the areas of structure determination, energetics, and applications, as well as builds a bridge to other chemical disciplines. Ist comprehensive coverage encompasses broad discussion of results, observation of relationships among various properties, and the description and application of structure and energy information in all domains of chemistry.
We welcome the broadest range of accounts of research in structural chemistry involving the discussion of methodologies and structures,experimental, theoretical, and computational, and their combinations. We encourage discussions of structural information collected for their chemicaland biological significance.