Weilong Tang, Nicholas G. Fischer, Xinzi Kong, Ting Sang, Z. Ye
{"title":"牙科和骨科钛植入物的混合涂层:当前的进展与挑战","authors":"Weilong Tang, Nicholas G. Fischer, Xinzi Kong, Ting Sang, Z. Ye","doi":"10.1002/bmm2.12105","DOIUrl":null,"url":null,"abstract":"Dental and orthopedic titanium implants are successfully and widely used but still face challenges due to complications leading to high treatment cost, morbidity, and even mortality. This review focuses on the hybrid coatings designed to prevent and mitigate implant failure by integrating multiple strategies and materials. The forms of manufacturing and synthesizing hybrid coatings were first discussed. We then categorize these coatings based on their biological functions: antibacterial coatings, which are essential for preventing difficult‐to‐treat infection; coatings designed to promote osseointegration, crucial for the mechanical stability of implants; coatings that encourage soft tissue attachment, contributing to the overall success and esthetics of implant. We summarize the state of the art in multifunctional coatings that integrate multiple biological functions as an alternative, holistic approach for reducing implant complications. The review culminates in a discussion on future directions in the field, emphasizing the potential and notable challenges these biofunctional hybrid coatings face toward obtaining commercial success in patients. Together, our article provides a comprehensive overview of current developments and a glimpse into the future of hybrid coatings for potentially revolutionizing dental and orthopedic implants.","PeriodicalId":503415,"journal":{"name":"BMEMat","volume":" 865","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid coatings on dental and orthopedic titanium implants: Current advances and challenges\",\"authors\":\"Weilong Tang, Nicholas G. Fischer, Xinzi Kong, Ting Sang, Z. Ye\",\"doi\":\"10.1002/bmm2.12105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dental and orthopedic titanium implants are successfully and widely used but still face challenges due to complications leading to high treatment cost, morbidity, and even mortality. This review focuses on the hybrid coatings designed to prevent and mitigate implant failure by integrating multiple strategies and materials. The forms of manufacturing and synthesizing hybrid coatings were first discussed. We then categorize these coatings based on their biological functions: antibacterial coatings, which are essential for preventing difficult‐to‐treat infection; coatings designed to promote osseointegration, crucial for the mechanical stability of implants; coatings that encourage soft tissue attachment, contributing to the overall success and esthetics of implant. We summarize the state of the art in multifunctional coatings that integrate multiple biological functions as an alternative, holistic approach for reducing implant complications. The review culminates in a discussion on future directions in the field, emphasizing the potential and notable challenges these biofunctional hybrid coatings face toward obtaining commercial success in patients. Together, our article provides a comprehensive overview of current developments and a glimpse into the future of hybrid coatings for potentially revolutionizing dental and orthopedic implants.\",\"PeriodicalId\":503415,\"journal\":{\"name\":\"BMEMat\",\"volume\":\" 865\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMEMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/bmm2.12105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMEMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/bmm2.12105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid coatings on dental and orthopedic titanium implants: Current advances and challenges
Dental and orthopedic titanium implants are successfully and widely used but still face challenges due to complications leading to high treatment cost, morbidity, and even mortality. This review focuses on the hybrid coatings designed to prevent and mitigate implant failure by integrating multiple strategies and materials. The forms of manufacturing and synthesizing hybrid coatings were first discussed. We then categorize these coatings based on their biological functions: antibacterial coatings, which are essential for preventing difficult‐to‐treat infection; coatings designed to promote osseointegration, crucial for the mechanical stability of implants; coatings that encourage soft tissue attachment, contributing to the overall success and esthetics of implant. We summarize the state of the art in multifunctional coatings that integrate multiple biological functions as an alternative, holistic approach for reducing implant complications. The review culminates in a discussion on future directions in the field, emphasizing the potential and notable challenges these biofunctional hybrid coatings face toward obtaining commercial success in patients. Together, our article provides a comprehensive overview of current developments and a glimpse into the future of hybrid coatings for potentially revolutionizing dental and orthopedic implants.