宽带室内电力线通信系统的噪声建模与缓解

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IET Communications Pub Date : 2024-06-10 DOI:10.1049/cmu2.12797
Ogunlade M. Adegoke, Saheed Lekan Gbadamosi, Babatunde S. Adejumobi, Israel E. Owolabi, Wasiu Adeyemi Oke, Nnamdi I. Nwulu
{"title":"宽带室内电力线通信系统的噪声建模与缓解","authors":"Ogunlade M. Adegoke,&nbsp;Saheed Lekan Gbadamosi,&nbsp;Babatunde S. Adejumobi,&nbsp;Israel E. Owolabi,&nbsp;Wasiu Adeyemi Oke,&nbsp;Nnamdi I. Nwulu","doi":"10.1049/cmu2.12797","DOIUrl":null,"url":null,"abstract":"<p>Communication systems are greatly hampered by many disruptive noises in powerline communication systems (PLC), which come with strong interference, resulting in the malfunction of PLC systems. Hence, there is a need to model noise and its effect on communication systems. This paper presents noise modelling and mitigation techniques for indoor broadband powerline communication systems. To model the PLC noise, frequency domain measurements employing the GSP-930 spectrum analyser were carried out to determine the noise frequency response in the frequency range of 1–30 MHz. The results obtained were plotted. While the analytical model for the noise model is presented, furthermore, noise mitigation techniques for multiple input multiple output PLC (MIMO-PLC) systems in the form of spatial modulation PLC systems have been proposed. The SM-PLC system employs the indices of the individual transmit lines to increase the data rate, as opposed to the traditional MIMO-PLC systems, where the symbol to be transmitted is transmitted by duplicating the symbol across all lines. The proposed system uses the maximum likelihood (ML) detector at the receiver to obtain estimates of the transmitted symbols. The simulation results of the SM-PLC system are compared with the already existing MIMO-PLC system and show a significant improvement of ≈6 dB and 5.2 dB in signal-to-noise ratio (SNR) at a bit error rate of 10(−5) for spectral efficiencies of 4 bits per channel use (bpcu) and 6 bpcu, respectively. On comparison of the SM-PLC system having a combination of additive white Gaussian noise and impulse noise at the receiver, the SM-PLC system outperformed the traditional MIMO-PLC by 3.5 and 3.8 dB in SNR for 4 and 6 bpcu, respectively.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 15","pages":"869-881"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12797","citationCount":"0","resultStr":"{\"title\":\"Noise modelling and mitigation for broadband in-door power line communication systems\",\"authors\":\"Ogunlade M. Adegoke,&nbsp;Saheed Lekan Gbadamosi,&nbsp;Babatunde S. Adejumobi,&nbsp;Israel E. Owolabi,&nbsp;Wasiu Adeyemi Oke,&nbsp;Nnamdi I. Nwulu\",\"doi\":\"10.1049/cmu2.12797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Communication systems are greatly hampered by many disruptive noises in powerline communication systems (PLC), which come with strong interference, resulting in the malfunction of PLC systems. Hence, there is a need to model noise and its effect on communication systems. This paper presents noise modelling and mitigation techniques for indoor broadband powerline communication systems. To model the PLC noise, frequency domain measurements employing the GSP-930 spectrum analyser were carried out to determine the noise frequency response in the frequency range of 1–30 MHz. The results obtained were plotted. While the analytical model for the noise model is presented, furthermore, noise mitigation techniques for multiple input multiple output PLC (MIMO-PLC) systems in the form of spatial modulation PLC systems have been proposed. The SM-PLC system employs the indices of the individual transmit lines to increase the data rate, as opposed to the traditional MIMO-PLC systems, where the symbol to be transmitted is transmitted by duplicating the symbol across all lines. The proposed system uses the maximum likelihood (ML) detector at the receiver to obtain estimates of the transmitted symbols. The simulation results of the SM-PLC system are compared with the already existing MIMO-PLC system and show a significant improvement of ≈6 dB and 5.2 dB in signal-to-noise ratio (SNR) at a bit error rate of 10(−5) for spectral efficiencies of 4 bits per channel use (bpcu) and 6 bpcu, respectively. On comparison of the SM-PLC system having a combination of additive white Gaussian noise and impulse noise at the receiver, the SM-PLC system outperformed the traditional MIMO-PLC by 3.5 and 3.8 dB in SNR for 4 and 6 bpcu, respectively.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"18 15\",\"pages\":\"869-881\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12797\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12797\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12797","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

电力线通信系统(PLC)中的许多干扰性噪声对通信系统的影响很大,这些噪声具有很强的干扰性,导致 PLC 系统出现故障。因此,有必要对噪声及其对通信系统的影响进行建模。本文介绍了室内宽带电力线通信系统的噪声建模和缓解技术。为建立 PLC 噪声模型,使用 GSP-930 频谱分析仪进行了频域测量,以确定 1-30 MHz 频率范围内的噪声频率响应。获得的结果绘制成图。在介绍噪声模型的分析模型的同时,还进一步提出了空间调制 PLC 系统形式的多输入多输出 PLC(MIMO-PLC)系统的噪声缓解技术。与传统的 MIMO-PLC 系统不同,SM-PLC 系统利用各个传输线路的指数来提高数据传输速率,而传统的 MIMO-PLC 系统是通过在所有线路上重复传输要传输的符号来提高数据传输速率。建议的系统在接收器上使用最大似然(ML)检测器来获取传输符号的估计值。SM-PLC 系统的仿真结果与现有的 MIMO-PLC 系统进行了比较,结果表明,在误码率为 10(-5)、频谱效率为每信道使用 4 比特 (bpcu) 和 6 bpcu 时,信噪比 (SNR) 分别显著提高了≈6 dB 和 5.2 dB。在接收器结合了加性白高斯噪声和脉冲噪声的 SM-PLC 系统的比较中,SM-PLC 系统在 4 和 6 bpcu 的信噪比方面分别比传统的 MIMO-PLC 系统高出 3.5 和 3.8 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noise modelling and mitigation for broadband in-door power line communication systems

Communication systems are greatly hampered by many disruptive noises in powerline communication systems (PLC), which come with strong interference, resulting in the malfunction of PLC systems. Hence, there is a need to model noise and its effect on communication systems. This paper presents noise modelling and mitigation techniques for indoor broadband powerline communication systems. To model the PLC noise, frequency domain measurements employing the GSP-930 spectrum analyser were carried out to determine the noise frequency response in the frequency range of 1–30 MHz. The results obtained were plotted. While the analytical model for the noise model is presented, furthermore, noise mitigation techniques for multiple input multiple output PLC (MIMO-PLC) systems in the form of spatial modulation PLC systems have been proposed. The SM-PLC system employs the indices of the individual transmit lines to increase the data rate, as opposed to the traditional MIMO-PLC systems, where the symbol to be transmitted is transmitted by duplicating the symbol across all lines. The proposed system uses the maximum likelihood (ML) detector at the receiver to obtain estimates of the transmitted symbols. The simulation results of the SM-PLC system are compared with the already existing MIMO-PLC system and show a significant improvement of ≈6 dB and 5.2 dB in signal-to-noise ratio (SNR) at a bit error rate of 10(−5) for spectral efficiencies of 4 bits per channel use (bpcu) and 6 bpcu, respectively. On comparison of the SM-PLC system having a combination of additive white Gaussian noise and impulse noise at the receiver, the SM-PLC system outperformed the traditional MIMO-PLC by 3.5 and 3.8 dB in SNR for 4 and 6 bpcu, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
期刊最新文献
A deep learning-based approach for pseudo-satellite positioning Analysis of interference effect in VL-NOMA network considering signal power parameters performance An innovative model for an enhanced dual intrusion detection system using LZ-JC-DBSCAN, EPRC-RPOA and EG-GELU-GRU A high-precision timing and frequency synchronization algorithm for multi-h CPM signals Dual-user joint sensing and communications with time-divisioned bi-static radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1