了解 SARS-CoV-2 中穗糖蛋白的分子作用以及 COVID-19 疫苗的新型治疗策略问题

Y. Matsuzaka, R. Yashiro
{"title":"了解 SARS-CoV-2 中穗糖蛋白的分子作用以及 COVID-19 疫苗的新型治疗策略问题","authors":"Y. Matsuzaka, R. Yashiro","doi":"10.3390/biomedinformatics4020084","DOIUrl":null,"url":null,"abstract":"In vaccine development, many use the spike protein (S protein), which has multiple “spike-like” structures protruding from the spherical structure of the coronavirus, as an antigen. However, there are concerns about its effectiveness and toxicity. When S protein is used in a vaccine, its ability to attack viruses may be weak, and its effectiveness in eliciting immunity will only last for a short period of time. Moreover, it may cause “antibody-dependent immune enhancement”, which can enhance infections. In addition, the three-dimensional (3D) structure of epitopes is essential for functional analysis and structure-based vaccine design. Additionally, during viral infection, large amounts of extracellular vesicles (EVs) are secreted from infected cells, which function as a communication network between cells and coordinate the response to infection. Under conditions where SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) molecular vaccination produces overwhelming SARS-CoV-2 spike glycoprotein, a significant proportion of the overproduced intracellular spike glycoprotein is transported via EVs. Therefore, it will be important to understand the infection mechanisms of SARA-CoV-2 via EV-dependent and EV-independent uptake into cells and to model the infection processes based on 3D structural features at interaction sites.","PeriodicalId":72394,"journal":{"name":"BioMedInformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Molecular Actions of Spike Glycoprotein in SARS-CoV-2 and Issues of a Novel Therapeutic Strategy for the COVID-19 Vaccine\",\"authors\":\"Y. Matsuzaka, R. Yashiro\",\"doi\":\"10.3390/biomedinformatics4020084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In vaccine development, many use the spike protein (S protein), which has multiple “spike-like” structures protruding from the spherical structure of the coronavirus, as an antigen. However, there are concerns about its effectiveness and toxicity. When S protein is used in a vaccine, its ability to attack viruses may be weak, and its effectiveness in eliciting immunity will only last for a short period of time. Moreover, it may cause “antibody-dependent immune enhancement”, which can enhance infections. In addition, the three-dimensional (3D) structure of epitopes is essential for functional analysis and structure-based vaccine design. Additionally, during viral infection, large amounts of extracellular vesicles (EVs) are secreted from infected cells, which function as a communication network between cells and coordinate the response to infection. Under conditions where SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) molecular vaccination produces overwhelming SARS-CoV-2 spike glycoprotein, a significant proportion of the overproduced intracellular spike glycoprotein is transported via EVs. Therefore, it will be important to understand the infection mechanisms of SARA-CoV-2 via EV-dependent and EV-independent uptake into cells and to model the infection processes based on 3D structural features at interaction sites.\",\"PeriodicalId\":72394,\"journal\":{\"name\":\"BioMedInformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedInformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomedinformatics4020084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedInformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomedinformatics4020084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在疫苗开发过程中,许多人使用尖峰蛋白(S 蛋白)作为抗原,这种蛋白从冠状病毒的球形结构中突出多个 "尖峰状 "结构。然而,人们对其有效性和毒性表示担忧。在疫苗中使用 S 蛋白时,其攻击病毒的能力可能较弱,激发免疫力的效果只能维持很短的时间。此外,它还可能引起 "抗体依赖性免疫增强",从而增强感染。此外,表位的三维(3D)结构对于功能分析和基于结构的疫苗设计至关重要。此外,在病毒感染过程中,受感染细胞会分泌大量的胞外囊泡 (EVs),这些囊泡可作为细胞间的通信网络,协调对感染的反应。在 SARS-CoV-2(严重急性呼吸系统综合征冠状病毒 2)分子疫苗接种会产生大量 SARS-CoV-2 棘突糖蛋白的情况下,细胞内过量产生的棘突糖蛋白有很大一部分是通过 EVs 运输的。因此,了解 SARA-CoV-2 通过 EV 依赖性和 EV 非依赖性摄入细胞的感染机制,并根据相互作用位点的三维结构特征建立感染过程模型将非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding the Molecular Actions of Spike Glycoprotein in SARS-CoV-2 and Issues of a Novel Therapeutic Strategy for the COVID-19 Vaccine
In vaccine development, many use the spike protein (S protein), which has multiple “spike-like” structures protruding from the spherical structure of the coronavirus, as an antigen. However, there are concerns about its effectiveness and toxicity. When S protein is used in a vaccine, its ability to attack viruses may be weak, and its effectiveness in eliciting immunity will only last for a short period of time. Moreover, it may cause “antibody-dependent immune enhancement”, which can enhance infections. In addition, the three-dimensional (3D) structure of epitopes is essential for functional analysis and structure-based vaccine design. Additionally, during viral infection, large amounts of extracellular vesicles (EVs) are secreted from infected cells, which function as a communication network between cells and coordinate the response to infection. Under conditions where SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) molecular vaccination produces overwhelming SARS-CoV-2 spike glycoprotein, a significant proportion of the overproduced intracellular spike glycoprotein is transported via EVs. Therefore, it will be important to understand the infection mechanisms of SARA-CoV-2 via EV-dependent and EV-independent uptake into cells and to model the infection processes based on 3D structural features at interaction sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Cinco de Bio: A Low-Code Platform for Domain-Specific Workflows for Biomedical Imaging Research Approaches to Extracting Patterns of Service Utilization for Patients with Complex Conditions: Graph Community Detection vs. Natural Language Processing Clustering Replies to Queries in Gynecologic Oncology by Bard, Bing and the Google Assistant Should AI-Powered Whole-Genome Sequencing Be Used Routinely for Personalized Decision Support in Surgical Oncology—A Scoping Review Transfer-Learning Approach for Enhanced Brain Tumor Classification in MRI Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1