{"title":"银离子在丙烯酸接枝羧甲基壳聚糖/二甲醛淀粉上的吸附性能","authors":"Jinyu Ouyang, Luqi Zhan, Qincong Luo, Jincheng Miao, Langrong Hu, Xiangqi He, Xiaojuan Wang","doi":"10.1007/s10450-024-00501-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, the novel environmental-friendly adsorbent (PAA<i>-g-</i>CMCDAS) obtained from carboxymethyl chitosan (CMC), dialdehyde starch (DAS) and polyacrylic acid (PAA) is used for removing silver ion. The adsorbent characterized by XRD, SEM, TGA, BET and FTIR, was evaluated for removal of silver ion from aqueous solution. The adsorption process of silver ions conformed to Langmuir isotherm and the second-order kinetic mode. The maximum adsorption capacity for silver ions was 404.77 mg·g<sup>−1</sup>, and the maximum removal efficiency was 95.05%. Also, the reusability and selectivity of PAA<i>-g-</i>CMCDAS was investigated, and the adsorption amount was still 388.77 mg·g<sup>−1</sup> and the removal efficiency was up to 91.29% after five times recycle; the removal efficiency of silver ions in mixed metal ions solution was 24.24% with the total removal efficiency of mixed metal ions 58%. Therefore, PAA<i>-g-</i>CMCDAS was an excellent silver ion adsorbent with good reusability.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"1225 - 1237"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption performance of silver ion on acrylic grafted carboxymethyl chitosan/dialdehyde starch\",\"authors\":\"Jinyu Ouyang, Luqi Zhan, Qincong Luo, Jincheng Miao, Langrong Hu, Xiangqi He, Xiaojuan Wang\",\"doi\":\"10.1007/s10450-024-00501-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present study, the novel environmental-friendly adsorbent (PAA<i>-g-</i>CMCDAS) obtained from carboxymethyl chitosan (CMC), dialdehyde starch (DAS) and polyacrylic acid (PAA) is used for removing silver ion. The adsorbent characterized by XRD, SEM, TGA, BET and FTIR, was evaluated for removal of silver ion from aqueous solution. The adsorption process of silver ions conformed to Langmuir isotherm and the second-order kinetic mode. The maximum adsorption capacity for silver ions was 404.77 mg·g<sup>−1</sup>, and the maximum removal efficiency was 95.05%. Also, the reusability and selectivity of PAA<i>-g-</i>CMCDAS was investigated, and the adsorption amount was still 388.77 mg·g<sup>−1</sup> and the removal efficiency was up to 91.29% after five times recycle; the removal efficiency of silver ions in mixed metal ions solution was 24.24% with the total removal efficiency of mixed metal ions 58%. Therefore, PAA<i>-g-</i>CMCDAS was an excellent silver ion adsorbent with good reusability.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 6\",\"pages\":\"1225 - 1237\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00501-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00501-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Adsorption performance of silver ion on acrylic grafted carboxymethyl chitosan/dialdehyde starch
In the present study, the novel environmental-friendly adsorbent (PAA-g-CMCDAS) obtained from carboxymethyl chitosan (CMC), dialdehyde starch (DAS) and polyacrylic acid (PAA) is used for removing silver ion. The adsorbent characterized by XRD, SEM, TGA, BET and FTIR, was evaluated for removal of silver ion from aqueous solution. The adsorption process of silver ions conformed to Langmuir isotherm and the second-order kinetic mode. The maximum adsorption capacity for silver ions was 404.77 mg·g−1, and the maximum removal efficiency was 95.05%. Also, the reusability and selectivity of PAA-g-CMCDAS was investigated, and the adsorption amount was still 388.77 mg·g−1 and the removal efficiency was up to 91.29% after five times recycle; the removal efficiency of silver ions in mixed metal ions solution was 24.24% with the total removal efficiency of mixed metal ions 58%. Therefore, PAA-g-CMCDAS was an excellent silver ion adsorbent with good reusability.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.